PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of reburning potential of syngas from sewage sludge gasification process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The motivation of this work was to define the reburning potential of sewage sludge gasification gas (syngas). Numerical simulation of co-combustion process of syngas in hard coal-fired boiler has been done. All the calculations were performed using the Chemkin program. Plug-Flow Reactor model was used. The calculations were modelled using GRI-Mech 2.11 mechanism. The highest NO conversions are obtained at the temperature of about 1000-1200 K. The highest reduction efficiency was achieved for the molar flow ratio of syngas equal to 15%. The combustion of hard coal with sewage sludge - derived syngas reduces NO emissions and the amount of coal needed to produce electricity and heat. Advanced reburning, which is a more complicated process gives efficiency of up to 80%. The Calculations show that the analyzed syngas can yield better results.
Słowa kluczowe
Rocznik
Strony
411--421
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • The Silesian University of Technology, Institute of Thermal Technology, ul. Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • 1. Adams B.R., Harding N.S., 1998. Reburning using biomass for NOx control. Fuel Process. Technol., 54, 249-263. DOI: 10.1016/S0378-3820(97)00072-6.
  • 2. Bilbao R., Alzueta M.U., Millera A., Cantin V., 1995. Experimental study and modeling of the burnout zone in the natural gas reburning process. Chem. Eng. Sci., 50, 2579-2587. DOI: 10.1016/0009-2509(95)00119-P.
  • 3. Cariln N.T., Annamalai K., Harman W.L., Sweeten J.M., 2009. The economics of reburning with cattle manure-based biomass in existing coal-fired power plants for NOx and C02 emissions control. Biomass Bioenerg., 33, 1139-1157. DOI: 10.1016/j.biombioe.2009.04.007.
  • 4. Dagaut P., Lecomte F., Chevallier S., Cathonnet M., 1998. Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions. Combust. Sci. and Technol., 139, 329-363. DOI: 10.1080/00102209808952093.
  • 5. D^browski J., Piecuch T., 2011. Mathematical description of combustion process of selected groups of waste. Rocznik Ochr. Srod., 13, 253-268.
  • 6. Folsom B.A., Sommer T.M., Payne R., 1991. Demonstration of combined NOx and S02 emission control technologies involving gas reburning. AFRE-JFRC International Conference on Environmental Control of Combustion Processes, Honolulu.
  • 7. Folsom B.A., 1997. Advanced gas reburning demonstration and commercial gas reburning system upgrade. Fuel Energy Abstracts, 4, 227. DOI: 10.1016/S0140-6701 (97)84634-6.
  • 8. Frassoldati A., Faravelli T., Ranzi E., 2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J Hydrogen Energy, 32, 3471-3485. DOI: 10.1016/j.ijhydene.2007.01.011.
  • 9. Galborg P., Alzueta M.U., Dam-Johansen K., Miller J.A., 1998. Kinetic modeling of hydrocarbon/nitric oxides interactions in a flow reactor. Combust. Flame, 115, 1-27. DOI: 10.1016/S0010-2180(97)00359-3.
  • 10. Glarborg P., Lilleheie N.I., Byggstoyl S., Magnussen F., Klipinen P., Hupa M., 1992. A reduced mechanism for nitrogen chemistry in methane combustion. Proc. Combustion Inst., 24, 889-895.
  • 11. Hardy T., 2003. Efficiency of NOx reduction from pulverized boilers using reburning. Archiwum Spalania, 2-4, 33-49 (In Polish).
  • 12. Hewson J.C., Bollig M., 1992. Reduced mechanism for NOx emissions from hydrocarbon diffusion flames. Proc. Combustion Inst., 24, 2171-2179.
  • 13. Klipinen P., Galborg P.P., Hupa M., 1992. Reburning chemistry: a kinetic modeling study. Ind. Eng. Chem. Res., 31, 1478-1490. DOI: 10.1021/ie00006a009.
  • 14. Lanigan E.P., Golland E.S., Rhine J.M., 1991. The demonstration of gas reburning at Longannet: leading the world in low-NOx technology. International Gas Reburn Technology Workshop, Sweden, 121-138.
  • 15. Maly P.M., Zamansky V.M., Ho L., Payne R., 1999. Alternative fuel reburning. Fuel, 78, 327-334. DOI: 10.1016/S0016-2361 (98)00161 -6.
  • 16. Miller J.A., Bowman C.T., 1989. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci., 15, 287-338. DOI: 10.1016/0360-1285(89)90017-8.
  • 17. Norman F., Andersson K., Leckner B., Johnsson F., 2009. Emission control of nitrogen in the oxy-fuel process. Prog. Energy Combust. Sci., 35, 385-397. DOI: 10.1016/j.pecs.2009.04.002.
  • 18. Piecuch T., Dabrowski J., Dabrowski T., 2009. A laboratory investigations on possibility of thermal utilization of post-production Waste polyester. Rocznik Ochr. Srod., 11, 87-101.
  • 19. Shen B., Yao Q., Xu X., 2004. Kinetic model for natural gas reburning. Fuel Process. Technol, 85, 1301-1315. DOI: 10.1016/j.fuproc.2003.09.005.
  • 20. Smith G.P., Golden D.P., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Lissianski Jr. V.V., Qin Z., Gri-Mech 2.11, www.me.berkeley.edu/gri_mech/
  • 21. Smoot L.D., 1998. International research centers' activities in coal combustion. Prog. Energy Combust. Sci, 24, 409-501. DOI: 10.1016/S0360-1285(97)00032-4.
  • 22. Smoot L.D., Hill S.C., Xu H., 1998. NOx control through reburning. Prog. Energy Combust. Sci., 24, 385-408. DOI: 10.1016/S0360-1285(97)00022-1.
  • 23. Szkarowski A., 2001. Technology of NOx emission reduction using method of flame dosed direction ballasting. Rocznik Ochr. Srod., 3, 54-73.
  • 24. Szkarowski A. 2002. Principles of calculation at suppression of NOx formation by a method of the dosed directed injection of a water ballast. Rocznik Ochr. Srod., 4, 366-378.
  • 25. Takahashi Y., Sakai M., Kunimoto T., Ohme S., Haneda H., Kawamura T., Kaneko S., 1983. Proc. the 1982 Joint Symposium on Stationary NOx Control, EPRI Report No. CS-3182.
  • 26. Wendt J.O.L., Sternling C.V., Matovich M.A., 1972. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection, Fourteenth Symposium on Combustion, 881, The Combustion Institute, Pittsburgh, PA.
  • 27. Werle S., 2012. A reburnig process using sewage sludge-derived syngas. Chem. Pap., 2, 99-107. DOI: 10.2478/sl 1696-011-0098-y.
  • 28. Werle S., 2011. Modeling of the reburnig process using sewage sludge-derived syngas. Waste Manage. DOI: 10.1016/j.wasman.2011.10.013.
  • 29. Werle S., Wilk R.K, 2010. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew. Energy, 35, 1914-1919. DOI: 10.1016/j.renene.2010.01.019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0014-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.