PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.
Słowa kluczowe
Rocznik
Strony
215--227
Opis fizyczny
Bibliogr. 20 poz., wykr., rys.
Twórcy
autor
autor
autor
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Aoki N., Hasebe S., Mae K., 2004. Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions. Chem. Eng. J., 101, 323-331. DOI: 10.1016/j.cej.2003.10.015
  • 2. Aoki N., Yube K., Mae K., 2007. Fluid segment configuration for improving product yield and selectivity of catalytic surface reactions in microreactors. Chem. Eng. J., 133, 105-111. DOI: 10.1016/j.cej.2007.02.006.
  • 3. Badur J., 2003, Numerical modelling of sustainable combustion In gas turbines. IFFM Publlishers, Gdansk, (in Polish)
  • 4. Chen G.-B, Chen C.-P., Wu C.-Y., Chao Y.-C, 2007. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube. Appl. Catal. A, 332, 89-97. DOI:10.1016/j.apcata.2007.08.011
  • 5. Deutschmann O., Maier L.I., Riedel U., Stroemman A.H., Dibble R.W., 2000. Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today, 59, 141-150. DOI: 10.1016/S0920-5861(00)00279-0.
  • 6. Duan Z., Muzychka Y.S., 2007. Slip flow in non-circular microchannels. Microfluid Nanofluid, 3, 473-484. DOI: 10.1007/s 10404-006-0141-4.
  • 7. Duran J.E., Mohseni M., Taghipour F., 2010. Modeling of annular reactors with surface reaction using computational fluid dynamics (CFD), Chem. Eng. Sci., 65, 1201-1211. DOI: 10.1016/j.ces.2009.09.075.
  • 8. Ewart T., Perrier P., Graur I., Meolans J.G., 2007. Tangential momentum accommodation in microtube, Microfluid Nanofluid, 3, 689-695. DOI: 10.1007/sl0404-007-0158-3.
  • 9. Jebauer S., Czerwińska J., 2007. Implementation of velocity slip and temperature jump boundary conditions for microfluidic devices. ITFR Reports, 5, 1-50.
  • 10. Jóźwik P., 2010. Final report of research project OR00004905 on: Military application of micro, ultra and nanocrystalline alloys NijAl - Technology demonstrator of thermoactive elements for contaminated air treatment systems, Military University of Warsaw (in Polish)
  • 11. Jóźwik P., Bojar Z., Winiarek P., 2010. Catalytic activity of Ni3Al foils in decomposition of selected chemical compounds. Inzynieria Materiatowa, 3, 654-657.
  • 12. Karniadakis G, Beskok A., Aluru N., 2005. Microflows and Nanoflows - Fundamentals and Simulation. In: Antman S.S., Marsden J.E., Sirovich L. (Eds.), Interdisciplinary Applied Mathematics, 29, Springer.
  • 13. Maxwell J.C., 1879. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. London, 170, 231-256.
  • 14. Morini G.L., Lorenzini M., Spiga M., 2005. A criterion for experimental validation of slip-models for incompressible rarefied gases through microchannels. Microfluid Nanofluid, 1, 190-196. DOI: 10.1007/s 10404-004-0028-1.
  • 15. Mu D., Liu Z.-S., Huang C, Djilali N., 2008. Determination of the effective diffusion coefficient in porous media including Knudsen effects, Microfluid Nanofluid, 4, 257-260. DOI: 10.1007/sl0404-007-0182-3.
  • 16. Norton D.G., Vlachos D.G., 2003. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures. Chem. Eng. Sci., 58, 4871-4882. DOI: 10.1016/j.ces.2002.12.005.
  • 17. Olafsen A., Daniel C, Schuurman Y., Raberg L.B., Olsbye U., Mirodatos C, 2006. Light alkanes C02 reforming to synthesis gas over Ni based catalysts. Catal. Today, 115, 179-185. DOI: 10.1016/j.cattod.2006.02.053.
  • 18. Pitakarnnop J., Varoutis S., Valougeorgis D., Geoffroy S., Baldas L., Colin S., 2010. A novel experimental setup for gas microflows, Microfluid Nanofluid, 8, 57-72. DOI: 10.1007/sl0404-009-0447-0
  • 19. Reid R.C., Sherwood T.K., 1966. The properties of gases and liquids, McGraw-Hill Book Company, New York.
  • 20. Xu B., Jii Y., 2005. Concentration slip and its impact on heterogeneous combustion in a micro scale chemical reactor. Chem. Eng. Sci., 60, 3561-3572. DOI: 10.1016/j.ces.2005.01.022. Yakabe H., Hishinuma M., Uratani M., Matsuzaki Y., Yasuda I., 2000. Evaluation and modeling of performance of anode-supported solid oxide fuel cell, J. Power Sources, 86, 423-431. DOI: 10.1016/S0378-7753(99)00444-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0009-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.