PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of nitrogen oxides formation applying dimensional analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the procedure for how to establish a mathematical model of nitrogen oxides formation based on the theory of dimensional analysis. The model is based on selected physical quantities (parameters) measurable during regular operation of a heat generation plant. The objective of using dimensional analysis to describe nitrogen oxides formation is to show that between operating parameters of the combustion equipment and the NOx formation there is a significant correlation. The obtained results, which are further described in this article, have proved this fact. The obtained formula expressing nitrogen oxides formation, based on dimensional analysis, applies universally to any boiler fuelled by coal, gas or biomass. However, it is necessary to find C, m, n constants for the formula by experiment, individually for each type of boiler and used fuel. The experiment is based on on-line measurements of selected operational parameters for a given boiler, combusting a certain type of fuel with its actual moisture content and calorific value. The methodology, described in this article, helps to find relationships between the operational parameters and the formation of NOx emissions for a particular furnace. The developed mathematical model has been validated with boilers fuelled by black coal and biomass. Both the results obtained from direct measurements of NOx in both types of boilers, and the results obtained by calculation using equation based on the dimensional analysis, are in a very good accord. When burning coal, the variation between NOx expression from the model and the on-line measurements ranges between -12.23 % and + 9.92 %, and for burning biomass between -0.54 % and 0.48 %. The intention of the authors is to inform the professional community about the suitability of the dimensional analysis to describe any phenomena for which there is currently no exact mathematical formulation based on differential equations or empirical formulas. Many other examples of dimensional analysis applications in practice may be found in the work of Carnogurska and Prihoda (2011).
Rocznik
Strony
175--184
Opis fizyczny
Bibliogr. 16 poz., tab
Twórcy
autor
autor
  • Technical University of Kosice, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoskolska 4, 042 00 Kosice, Slovakia
Bibliografia
  • 1. Carnogurska, M., Pfihoda, M., 2011. Application of the dimensional analysis in modeling of phenomena in the area of energy, Kosice, Vienala s. r. o., 26-42 (In Slovak).
  • 2. Carnogurska, M., 1998. Dimensional analysis and the theory of similarity and modeling in the practice. Kosice, Elfa, s. r. o., 1998, 15-24 (In Slovak).
  • 3. Dzurenda L., 2003. Low-temperature formation of nitrogen oxides in the combustion process of wet wood in fire places heat generators. Acta Mech. Slovaca, 3, 207-212 (In Slovak).
  • 4. Fan W., Lin Z., Li Y., Li Y., 2010. Effect of temperature on NO release during the combustion of coals with different ranks. Energy Fuels, 24, 1573-1583. DOI: 10.1021/ef901198j.
  • 5. Horbaj P., 2004. Ecological aspects of combustion. TU of Kosice, Kosice, 39, (In Slovak).
  • 6. Ibler Z., Kartak J., 1990. Model calculations of emissions of NOx in the combustion of fossil fuels. Energetika, 40, 9/10, 346-349 (in Czech).
  • 7. Jandacka J., Malcho M., 2007. Biomass as an energy source. Juraj Stefufi - GEORG, Zilina, 31-38, (In Slovak).
  • 8. Kim J. P., Schnell U., Scheffknecht G, Benim A.C., 2007. Numerical modeling of MILD combustion for coal. Prog. Comp. Fluid Dyn., 7, 6, 337-346.
  • 9. KlikaZ., Kasterko R., Bartofiova L., KolatP., CechB., 2010. Waste wood combustion and co-combustion with lignite a fluidized - bed power station. Chem. Process Eng., 31, 273-287.
  • 10. Muzio L.J., Quartucy G.C., 1997. Implementing NOx control: Research to application. Prog. Energy Combust. Sci., 23, 233-266. PII: SO360-12&5(a7)00002-6.
  • 11. Redr M., Pfihoda M., 1991. Basics of thermal engineering. SNTL, Prague, Czech Republic, 107, (in Czech).
  • 12. Rong H., Toshiyuki S., Makoto T., Tetsuya H., Junichi S., 2004. Analysis of low NO emission in high temperature air combustion for pulverized coal. Fuel, 83, 9, 1133-1141.
  • 13. Xu M., Azevedo, J.L.T., Carvalho, M.G., 2000. Modelling of the combustion process and NOx emission in a utility boiler. Fuel, 79, 13, 1611-1619.
  • 14. Zeldovic J.B., 1947, Oxidation of nitrogen in the combustion. AN, Moskva, 1947, 77-79 (in Russian).
  • 15. Zeldovic J.B., Barenblatt, G.I., Librovic V.B., Machviladze G.M., 1980. Mathematical theory of combustion and explosion. Nauka, Moscow, 31-35 (in Russian).
  • 16. Zhu J., Lu Q., Niu T., Song G., Yongjie N., 2009. NO emission on pulverized coal combustion in high temperature air from circulating fluidized bed - an experimental study. Fuel Process. Technol, 90, 5, 664-670.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0009-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.