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Abstract. The paper introduces a stochastic model for a class of population-based global optimization meta-heuristics, that generalizes

existing models in the following ways. First of all, an individual becomes an active software agent characterized by the constant genotype

and the meme that may change during the optimization process. Second, the model embraces the asynchronous processing of agent’s actions.

Third, we consider a vast variety of possible actions that include the conventional mixing operations (e.g. mutation, cloning, crossover) as

well as migrations among demes and local optimization methods. Despite the fact that the model fits many popular algorithms and strategies

(e.g. genetic algorithms with tournament selection) it is mainly devoted to study memetic algorithms.

The model is composed of two parts: EMAS architecture (data structures and management strategies) allowing to define the space of

states and the framework for stochastic agent actions and the stationary Markov chain described in terms of this architecture. The probability

transition function has been obtained and the Markov kernels for sample actions have been computed.

The obtained theoretical results are helpful for studying metaheuristics conforming to the EMAS architecture. The designed synchroniza-

tion allows the safe, coarse-grained parallel implementation and its effective, sub-optimal scheduling in a distributed computer environment.

The proved strong ergodicity of the finite state Markov chain results in the asymptotic stochastic guarantee of success, which in turn imposes

the liveness of a studied metaheuristic. The Markov chain delivers the sampling measure at an arbitrary step of computations, which allows

further asymptotic studies, e.g. on various kinds of the stochastic convergence.

Key words: computational multi-agent systems, asymptotic analysis, global optimization, parallel evolutionary algorithms, Markov chain

modeling.

1. Introduction

Meta-heuristic optimization methods have nowadays become

one of the weapons of choice to deal with complex optimiza-

tion problems. The success story of these techniques is marked

by our increasing understanding of them. One of the most im-

portant lessons learned was put forward by early practitioners

such as L. Davis [1] and P. Moscato [2], namely the need for

adjusting the solver to the problem by exploiting knowledge

available on the latter. Initially, this practical lesson was the-

oretically backed up initially by [3] and later by [4] in the

conspicuous No-Free-Lunch Theorem. The realization of this

lesson constitutes one of the raisons-d’être of optimization

techniques such as memetic algorithms (MAs) [5–7]. These

are population-based techniques that blend together ideas from

other meta-heuristics, most commonly in terms of integrating

local search (LS) within the population-based search engine.

This definition of MA was actually popularized by early works

such as [8] and paved the way for the vigorous development

of optimization algorithms based on this idea, exhibiting a

remarkable record of success, check, e.g., [9, 10]. It is also

true that seminal works on this topic had a wider perspective,

in which an evolutionary algorithm endowed with LS was an

appropriate incarnation of a MA, rather than a restrictive defi-

nition [2]. Under this wider interpretation of MAs, they can be

regarded a population of search agents that alternate periods

of cooperation/competition with phases of self-improvement

see [11, 12]. The use of the term agent here is to emphasize

the fact that in the search process individuals are more active

actors than mere solution placeholders that passively suffer

the application of different variation and selection operations

on them [13]. While this interpretation remains compatible

with classical MA approaches, it also opens up the door to

more complex strategies and suggests an underlying connec-

tion of MAs with multi-agent systems. Indeed, the current

notion of memetic computing as a paradigm that uses memes

as units of information encoded in computational representa-

tions for the purpose of problem-solving can easily lead to

a co-evolving system of intelligent agents [14], see also [15–

17]. In this context, a meme is regarded as a lifetime learning

procedure capable of locally improving solutions [18–20], al-

though a more general interpretation is also possible in terms

of culturally learned traits [21].

Aside of many important MA engineering applications

mentioned above – see also [22] – several interesting ex-

amples of such metaheuristics solving difficult problems in

area of computational mechanics and computer graphics may

be found in [23, 24]. Some other results obtained by artifi-

cial agent-based metaheuristics, more affordable than certain

classical approaches are the optimization of neural-network

architecture [25, 26], multi-objective optimization [27], multi-

modal optimization [28] and financial optimization [29] to

name a few. A survey of the above mentioned results is pre-

sented in [30].

∗e-mail: olekb@agh.edu.pl

257

Unauthenticated | 89.67.242.59
Download Date | 5/19/13 7:54 PM



A. Byrski, R. Schaefer, M. Smołka and C. Cotta

Formal analysis of metacheuristic features is usually a hard

task. Foundations of this area of research was delivered in par-

allel by Vose (see e.g. [31]) and Rudloph (see e.g. [32–34]).

They introduced the way of modeling metaheuristic dynam-

ics as a Markov chain with a set of states being the set of

all possible populations or their unambiguous representations

(e.g. the Vose simplex). This approach allows analyzing of

the metaheuristic convergence in the more or less convention-

al sense (see [33, 35]) and at the same time analyzing of the

asymptotic behavior of sample measures and verifying in this

way the asymptotic guarantee of success. The second feature

(cf. [36, 37]) was frequently drawn as a direct consequence of

ergodicity of a Markov chain and justifies the metaheuristics

as a well-defined global optimization algorithm.

Other models for single-population, e.g., [38–41] and par-

allel evolutionary algorithms, e.g., [42–45] were defined as

well; however, more advanced optimization techniques like

memetic or agent-based computational systems lacked such

models, with some notable exceptions, e.g., [46] consider an

abstract model of MAs based on applying gradient-based LS

to the whole population on a generation-basis and provide a

sufficient condition for quasi-convergence (i.e. asymptotically

finding one of the best k solutions in the search space, where k
is the population size). Also, [47] consider adaptive MAs and

indicate that only static, greedy and global adaptation strate-

gies (i.e, strategies that use no feedback, check all possible

memes and pick the best one, or use a complete historical

knowledge to decide on the choice of meme respectively) are

globally convergent using elitist selection mechanisms. This

stems from [48, 49] and cannot be proved in general for local

adaptive strategies.

Summing up, there is still a lack of a comprehensive sto-

chastic model of the wide class of memetic algorithms. One of

the reason is perhaps that memetic algorithms are still weak-

ly defined and formalized which of course have to be done

before any attempt to analyse their features mathematically.

In the course of the paper we introduce the EMAS archi-

tecture (see Sec. 2) that generalizes the broad class of meta-

heuristics including in particular GAs with the tournament

selection and most of advanced MA instances. The idea of

EMAS came from [50] and was further enhanced by [25, 26].

The main directions in which the classical GA models was

relaxed are: an individual become the active software agent

characterized by the constant genotype and the meme that

can be changed during the optimization process, the multi-

deme structure of population, the asynchronous processing of

agent’s actions, the broad variety of possible actions that may

be the conventional mixing operations (e.g. mutation, cloning,

crossover) as well as migrations among demes and local opti-

mization methods (see Sec. 6). Both, genes and memes comes

from finite universa. This model allows for defining the space

of states and the framework for describing stochastic effect of

agent’s actions.

Next step consists in detailed analysis of dependencies

among the actions (see Sec. 3) which allow to define the safe

synchronization among agents (see Sec. 4).

Both above steps enable to define the stationary Markov

chain that transforms stochastically EMAS states according

to the roles given by agent’s actions and inter-agent synchro-

nization (see Sec. 5).

Assuming some non-restrictive features of the sample set

of agent’s actions defined in Sec. 6 we are able to prove the

ergodicity of the Markov chain expressing the dynamics of

the metaheuristics being in accordance with the EMAS archi-

tecture.

The agent-based architecture of the global optimization

metaheuristics makes a metaphor useful by the analyzing of

their asymptotic features. Our earlier papers [51, 52] discussed

similar metaheuristics with a continuous meme representation

and in consequence the set of states was bounded but infinite.

The ergodicity of the Markov chain is difficult to study in this

case.

The results presented in this paper were partially commu-

nicated at PPSN 2010 conference [53]. Moreover, the agent

based synchronization among demes was applied for island

model for which the Markov chain model was established

and its ergodicity was proven (see [54]). The Markov chain

model was also obtained for the complex, metaheuristic HGS

with a tree-structured set of demes (see [55]).

The results presented in this paper might be helpful by

many aspects of metaheuristic analysis especially of memetic

type.

• The EMAS framework can help to understand the stochas-

tic dynamics of particular strategy that fall into its spec-

ification. We show the way of model its behavior as the

stationary Markov chain. In particular, the general form of

the space of states (see Subsec. 2.2, formula (2.2) ) and the

transition probability function (see Observations 5.1, 5.2)

are drown.

• We formulate and prove precise mathematical criterion

which enable to classify an action as the global one, which

has to be executed exclusively in the whole system, or

the local one, which can be performed independently with

other local action in the separate location (see Definition

3.1, Propositions A.1 and 3.1). This results allows to de-

sign proper synchronization among agents or verify the

existing one ensuring metaheuristic safeness. In particular

the safe, coarse-grained parallel computation and its sub-

optimal scheduling in a distributed computer environment

(computer cluster) might be obtained.

• The ergodicity of Markov chain assigned with the stud-

ied memetic metaheuristic (see Theorem 7.1, Theorem 7.2,

Corollary 7.1, Remark 7.4) leads to its asymptotic stochas-

tic guarantee of success (see [36, 37]). This condition im-

poses in particular liveness of studied metaheuristic allow-

ing to use it as the robust global optimization strategy.

• The Markov chain modeling particular metaheuristic allows

to obtain its sampling measure in the arbitrary step by iter-

ating the probability transition function. It constitutes the

necessary basis for future asymptotic studies e.g. various

kinds of stochastic convergence (see e.g. [33, 35]).
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The theoretical deliberations are illustrated with exem-

plary experimental results obtained with use of EMAS and

its memetic variants (see Appendix C).

2. EMAS architecture and behavior

In this section we give a description of the EMAS architecture

and refine the model already presented in [52] to apply it to

discrete spaces of states.

We focus on solving global optimization problems consist-

ing in finding all global minimizers arg min{Φ(x)}, x ∈ D
of the objective function: Φ : D → [0,M ], where D ⊂
R

N , N ∈ N stands for the admissible, sufficiently regular

set of solutions, R+ ∋ M < +∞. The positive value of Φ
was motivated only by the traditional convention accepted in

genetic algorithms which allow us later for easy definition

of agent’s action based on a fitness function. Of course, each

bilaterally bounded objective can be shifted to the weakly pos-

itive one and the obtained global optimization problem will

be equivalent.

2.1. Characterization of computational agents. Computa-

tional agents in EMAS may be perceived as autonomous indi-

viduals. Every agent is capable of observing its environment

by gathering information that it finds important, making deci-

sions that affect its activity and performing actions that lead

to changes in the overall state of the system, see e.g., [56, 57].

Genotypes belong to the finite genotype universum

U, #U = r < +∞ which can be the set of binary strings,

real numbers or other codes convenient to solving particu-

lar global optimization problem. Agents are assigned to loca-

tions (analogous to “islands”, see e.g. [58]) and may migrate

between them. Genetic operations performed on the agent’s

genotypes such as crossover and mutation, are similar to those

used in classical evolutionary algorithms and lead to create a

new agent (see Subsec. 6.2). The EMAS agent can also create

its offspring using the local search method starting from the

point encoded by its genotype (see Subsec. 6.3). Each agent is

transformed asynchronously in the EMAS system. Selection

mechanisms correspond to their prototype and are based on

the existence of a non-renewable resource called life energy,

which is gained and lost when agents perform actions, see

[59].

The EMAS under consideration is characterized by:

• Quasi-signature of an agent: it is composed of its (invari-

ant) genotype gen and the numerical identifier of the copy

n changed during the migration.

• Fitness function: it is the function ψ : U → [0,M ] related

in some way to the objective Φ where again R+ ∋ M <
+∞. In the simplest case ψ(gen) = Φ(η(gen)), where

η : U → D is the decoding function.

• Variable location of agents: active EMAS agents are con-

tained in locations described by a set of immutable integer

labels Loc = {1, . . . , s}. The locations are linked together

by channels along which agents may migrate from one lo-

cation to another. The topology of channels is determined

by the symmetric relation Top ⊂ Loc2. We assume that

the connection graph 〈Loc, T op〉 is coherent and does not

change during the system evolution.

• Dynamic collection of agents: agents belong to the prede-

fined finite set Ag, which at every moment can be one-

to-one mapped into set U × P , where P = {1, . . . , p}
and p is assumed to be the maximum number of agents

containing the same genotype. In other words, every agent

aggen,n ∈ Ag contains one potential solution to a given

problem encoded as gen ∈ U , whereas there may be more

than one agent present in the system containing this so-

lution and the index n ∈ P is used to distinguish them.

Furthermore, we assume that every location has its own

separate subset of admissible genotype copy numbers Pi,

i.e. P =
⋃

i∈Loc Pi, Pi ∩ Pj = ∅ for i 6= j and n ∈ Pi

as long as the agent with the temporary copy number n
resides at i.
• Variable energy of agents: its value is quantized; every

agent may possess only one of the following energy values:

0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e.
Although a pair (gen, n) is not a true identifier because

of the variability of its second component n, it properly dis-

tinguishes different agents at every time-point. Thus in the

sequel we shall write agent aggen,n keeping in mind that this

notation is time-dependent. Note that in the context of find-

ing the objective function minimizers the identity of agents

(i.e. solution holders) is less important. Thus the crucial agent

attributes are the genotype (and the fitness as its derivative)

and the life energy (see the sequel), whereas the copy num-

ber plays only an auxiliary role. If, on the other hand, one

wanted to align our approach with the Belief-Desire-Intention

(BDI) model [60], one could construct a true agent identifier

by means of our quasi-signature as the composition of the

agent’s genotype with the sequence of the agent’s copy num-

bers at subsequent moments, putting 0 at the moments when

the agent was active. It is, however, worth noticing that such

an identifier would not be very useful unless it was stored in

a globally synchronized repository and the need of the global

synchronization would in turn prevent the concurrent perfor-

mance of some crucial EMAS actions.

2.2. EMAS state. Let us introduce the set of three-

dimensional incidence and energy matrices x ∈ X
with s layers (corresponding to all locations) x(i) =
{x(i, gen, n), gen ∈ U, n ∈ P}, i ∈ Loc. The layer x(i)
will contain energies of agents in the i-th location. In other

words, condition x(i, gen, k) > 0 means that the k-th clone

of the agent containing gene gen ∈ U is active, its energy

equals x(i, gen, k) and it is present in i-th location.

We introduce the following coherency conditions:

• (·, j, k)-th column contains at most one value greater than

zero, which states the fact that the agent with the k-th copy

of the j-th genotype may be present in only one location at

a time, whereas other agents containing copies of the j-th
genotype may be present in other locations;

• entries of the incidence and energy matrices are non-

negative x(i, j, k) ≥ 0 for 1 ≤ i ≤ s, 1 ≤ j ≤ r, 1 ≤ k ≤ p
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and
s∑

i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1, which means that total ener-

gy contained in the whole system is constant and equal to

1;

• x(i, gen, n) can be positive only for n acceptable in loca-

tion i, i.e. n ∈ Pi;

• each layer x(i) contains at most qi values greater than zero,

which denotes the maximum capacity of the i-th location

and, moreover, the quantum of energy ∆e is less than or

equal to the total energy divided by the maximal number

of individuals that may be present in the system

∆e ≤ 1
s∑

i=1

qi

, (1)

which allows to achieve maximal population of agents in

the system;

• reasonable values of p should be greater than or equal to 1

and less than or equal to
s∑

i=1

qi; we assume that p =
s∑

i=1

qi,

which assures that each configuration of agents in loca-

tions is available, respecting the constrained total number

of active agents
s∑

i=1

qi; increasing p over this value does

not enhance the descriptive power of the presented model;

• the maximal number of copies for each location #Pi

should not be less than qi because we want to allow a sys-

tem state in which a particular location is filled with clones

of one agent; on the other hand because of the previous

assumption #Pi cannot also be greater than qi; therefore

finally we assume that #Pi = qi.

Gathering all these conditions, the considered set of three-

dimensional incidence and energy matrices may be described

in the following way:

X =

{
x ∈ {0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}s·r·p,

subject to: ∆e ·m = 1,
s∑

i=1

r∑

j=1

p∑

k=1

x(i, j, k) = 1,

x(i, j, k) = 0 for 1 ≤ i ≤ s, 1 ≤ j ≤ r, k 6∈ Pi,
r∑

j=1

p∑

k=1

[x(i, j, k) > 0] ≤ qi for 1 ≤ i ≤ s,

s∑

i=1

[x(i, j, k) > 0] ≤ 1 for 1 ≤ j ≤ r, 1 ≤ k ≤ p
}

(2)

where [·] is the indicator function, ie. [true] = 1 and

[false] = 0.

2.3. Managing agents, EMAS structure and behavior.

EMAS may be modeled as the following tuple:

< U,Loc, T op,Ag, {agseli}i∈Loc,

locsel, {LAi}i∈Loc,MA, ω,Act >
(3)

where

MA (master agent) is used to synchronize the work of the

locations; it allows to perform actions in particular loca-

tions; this agent is also used to introduce the necessary

synchronization into the system;

locsel : X →M(Loc) is the function used by MA to deter-

mine which location should be allowed to perform the next

action;

LAi (local agent) is assigned to each location; it is used to

synchronize the work of computational agents present in

its location, LAi chooses the computational agent and lets

it evaluate a decision and perform the action, at the same

time asking MA whether this action may be performed;

agseli : X →M(U × P ) is a family of functions used by

local agents to select the agent that may perform the ac-

tion, such that every location i ∈ Loc has its own function

agseli; probability agseli(x)(gen, n) vanishes when the

agent aggen,n is inactive in the state x ∈ X or it is present

in a location different from i-th one (n /∈ Pi);

ω : X × U →M(Act) is the function used by agents for se-

lecting actions from the set Act; both symbols will be ex-

plained later.

Act is a predefined, finite set of actions.

HereafterM(·) stands for the space of probabilistic measures.

Moreover, we will use the following convention to describe

the discrete probability distributions a : X × Par →M(A)
on the set A, depending on state x ∈ X and an optional

parameter p ∈ Par.
• a(x, p)(d) is the probability of d ∈ A (denoted by a small

letter), assuming the current state x and the parameter p.
It simplifies the more rigorous notation: a(x, p)({d}).
• a(x, p)(W ),W ⊂ A is the probability of set W (denoted

by a capital letter).

The names a,A, Par are of course generic. The variables d
and p may be tuples as well. In the case of a probability

distribution on the finite set A this notation is unambiguous.

The population of agents is initialized by means of the

introductory sampling. This may be regarded as a one-time

sampling from X according to a predefined probability distri-

bution (possibly the uniform one) from M(X). Every agent

starts working immediately after being activated. At every ob-

servable moment a certain agent on each location gains the

possibility of changing the state of the system by executing

its action.

The function agseli is used by the Local Agent LAi to

determine which agent present in the i-th location is the next

one to interact with the system. After being chosen, the agent

aggen,n chooses one of the possible actions according to the

probability distribution ω(x, gen). Notice the relationship of

this probability distribution with the concept of fine-grain

schedulers introduced into the syntactic model for memetic

algorithms in [5]. It must be noted that the selection of ac-

tion by all agents containing the same genotype gen in the

same state x is performed according to the same probability

distribution ω(x, gen) and does not depend on the genotype

copy number n. In the simplest case ω returns the uniform

probability distribution over Act for all (x, gen) ∈ X × U .
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Next, the agent applies to LAi for the permission to per-

form this action. When the permission is granted, aggen,n

checks whether the associated condition (described later by

the formula (5) and the surrounding text) is true, and if so,

the agent performs the action. If during an action an agent’s

energy is brought to 0, this agent suspends its work in the

system (it becomes inactive).

The master agent MA manages the activities of LAi al-

lowing them to grant their agents permission (thus relating to

coarse-grain schedulers in [5]). The detailed managing algo-

rithm is described in Sec. 4.

Let us denote by

Xgen,n = {x ∈ X | ∃ l ∈ Loc : x(l, gen, n) > 0} ,
(gen, n) ∈ U × P (4)

a subset of states in which the agent aggen,n is active.

Each action α ∈ Act will be represented as a pair of func-

tion families ({δgen,n
α }(gen,n)∈U×P , {ϑgen,n

α }(gen,n)∈U×P ).
Functions

δgen,n
α : X → M({0, 1}) (5)

make it possible to take the decision, if the action can

be performed. The action α is performed with probability

δgen,n
α (x)(1) by the agent aggen,n at state x ∈ X and reject-

ed with probability δgen,n
α (x)(0). Because the action may be

invoked only by the active agent, the function δgen,n
α always

has to return a negative decision for all x ∈ X \Xgen,n and

only the restriction δgen,n
α |Xgen,n constitutes the crucial part

of this function, so

δgen,n
α (x) =

{
δgen,n
α |Xgen,n x ∈ Xgen,n

(1, 0) x ∈ X \Xgen,n.
(6)

Next, the formula

ϑgen,n
α : X →M(X) (7)

defines non-deterministic state transition functions, therefore

ϑgen,n
α is caused by executing action α by the agent aggen,n.

The value of ϑgen,n
α (x)(x′) denotes the probability of pass-

ing from the state x to x′ resulting from the execution of

the action α by the agent aggen,n. Because the function is

only invoked if the agent is active, it is enough to define a

restriction ϑgen,n
α |Xgen,n for each action α, and let it take an

arbitrary value on X \Xgen,n.

If any action is rejected, the trivial state transition

ϑnull : X →M(X) (8)

such that for all x ∈ X

ϑnull(x)(x
′) =

{
1 if x = x′

0 otherwise
(9)

is performed.

The probability transition function for action α performed

by the agent containing the n-th copy of the genotype gen

̺gen,n
α : X →M(X) (10)

is defined by the formula

̺gen,n
α (x)(x′) = δgen,n

α (x)(0) · ϑnull(x)(x
′)

+δgen,n
α (x)(1) · ϑgen,n

α (x)(x′),
(11)

where x ∈ X denotes the current state and x′ ∈ X is the con-

secutive state resulting from the conditional execution of α.

Notice that it is formally possible to consider a very large

(yet finite) set Act, comprising all actions up to a certain

description length (using a Gödel numbering [61] or any ap-

propriate encoding). This implies that this set may be implic-

itly defined by such an encoding, allowing much flexibility in

the set of actions available (a connection can be drawn with

multi-meme algorithms [19]).

Observation 2.1. Given an agent aggen,n ∈ Ag it is enough

to define two restrictions δgen,n
α |Xgen,n and ϑgen,n

α |Xgen,n

in order to establish the probability transition function ̺gen,n
α

associated with the execution of the action α – see Eq. (10)

and Eq. (11).

3. Global and local actions

The agents’ actions may be divided into two distinct types:

• global – they change the state of the system in two or more

locations, so only one global action may be performed at

a time,

• local – they change the state of the system in one location

considering only the state of local agents; only one local

action for one location may be performed at a time.

Therefore, we divide the Act set in the following way:

Act = Actgl ∪Actloc. (12)

Informally speaking, if the location i ∈ Loc contains

the agent performing a certain local action α ∈ Actloc, on-

ly entries of layer x(i) of the incidence and energy matrix

are changed (other changes have zero probability). Moreover,

these actions do not depend on other layers of x. The action

null is obviously “the most local one”, because it does not

change anything at all.

The above description can be formalized as follows:

Definition 3.1. The action α ∈ Act is local (α ∈ Actloc) if,

and only if, for any agent which can execute the action (i.e.,

∀ (gen, n) ∈ U × P ) we have:

1. α does not change anything besides part of the state that

describes the location l in which aggen,n is performing the

action α (i.e., x(l) being the l−th layer in matrix x), so

∀ x ∈ X : ̺gen,n
α (x)(xnext) = 0, (13)

for xnext ∈ X such that ∃ i 6= l : xnext(i) 6= x(i) and

xnext denotes one of the states which is supposed to be

reached at the step immediately after state x appears;

2. α is independent upon any other layers of x which means

that

∀ x1, x2 ∈ X,x1(l) = x2(l),

∀ x1,next, x2,next ∈ X,x1,next(l) = x2,next(l)

and for each i 6= l (14)

x1(i) = x1,next(i), x2(i) = x2,next(i)

̺gen,n
α (x1)(x1,next) = ̺gen,n

α (x2)(x2,next).

All other actions are considered global (elements of Actgl).
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The importance of local actions lies in the fact that they

are commutative if performed in different locations. The for-

mal proof of the local actions commutativity is provided in

Appendix A.

The following feature of the local actions may be drawn:

Proposition 3.1. Any two local actions executed by agents

present in different locations commute.

Proof. Take gen, gen′ ∈ U , n, n′ ∈ P . Let aggen,n perform

a local action α in the layer l and ag′gen′,n′ perform a local

action α′ in the layer l′ different from l. The transition func-

tion of the composite action in which α is performed before

α′ is given by the following formula.

(̺gen′,n′

α′ ◦ ̺gen,n
α )(x)(x′)

=
∑

y∈X

̺gen′,n′

α′ (y)(x′) · ̺gen,n
α (x)(y). (15)

Since both actions are local (i.e., they satisfy (13) and (14))

and are performed in different locations, the assumptions of

Proposition A.1 are satisfied. From this Proposition we obtain

(̺gen′,n′

α′ ◦ ̺gen,n
α )(x)(x′) = (̺gen,n

α ◦ ̺gen′,n′

α′ )(x)(x′) (16)

for any x, x′ ∈ X .

Local actions must be mutually exclusive within a sin-

gle location and global actions are mutually exclusive in the

whole system, so only one global action may be performed

at a time in the system, but many local actions (one in each

location at most) may be performed at the same time.

4. EMAS management

In order to obtain relaxed synchronization (i.e. agents present

in locations may act in parallel), some timing mechanism

must be introduced, that is, all state changes must be as-

signed to subsequent time moments t0, t1, . . . Now, let us

consider the algorithmic description for computational agents,

LAi, i ∈ Loc (4.3) and MA presented in Pseudocodes 4.1,

4.3 and 4.2 respectively. Note, that here and later a(B) de-

notes the effect of random sampling one of the elements from

the set B with probability distribution a. We also assume

that the sets localact, globalact ⊂ Act contain the local and

global actions’ signatures respectively.

The computational agent CA = aggen,n, present in the

location i at every observable time moment chooses an ac-

tion it wants to perform, using probability distribution ω to

choose from Act and asks its supervisor – local agent LAi –

for permission, sending a message containing the chosen ac-

tion using function send(). Then, it suspends its work waiting

for permission (or denial) from LAi using blocking function

b receive().
Both these functions are variadic. First of their parameters

is always a target identifier, and the next parameters may be

one or more values to be passed. In this particular case, the

target either receives a certain value or just receives a signal

from the sender (in this case no value is required).

When permission is granted and the decision assigned to

the considered action is true, the computational agent changes

the state of the location (see Pseudocode 4.1). Afterwards the

agent suspends its work again in order to get permission to

perform subsequent actions.

The local agent (see Pseudocode 4.3) starts by checking

whether the location contains any agents, so it sends a message

to the master agent and waits for reply. If there are agents in

the location, the LAi receives signals containing actions to be

performed from all its agents and puts them into a hash map

indexed by genotypes and containing actions. Then the lo-

cal agent utilizes function agseli to choose the computational

agent which should try to perform its action. This action is re-

ported to the master agent and after receiving permission, the

computational agent can perform the action. All other agents

(and the chosen one when permission is not granted) are pre-

vented from performing their actions. Afterwards the agent

waits for all local agents to report the readiness to perform

subsequent actions, and then reports this fact to the master

agent and – after receiving permission – lets them do it.

Pseudocode 4.1: Computational agent’s algorithm

true




reply ← 0

α← ω(x, gen)(Act)

send(LAi, α)

b receive(LAi, reply)

if reply and δα(x, gen, n)({0, 1})
then xnext ← ϑgen,n

α (x)(X)

send(LAi)

b receive(LAi)

Pseudocode 4.2: Master agent’s algorithm

while true




local← {i : i ∈ [1, s]}
localloc← ∅
localglob← ∅
act← 0

rep← 0

for each j ∈ local

do






b receive(j, act)

if act ∈ Actgl

then localglob← localglob∪ {j}
else localloc← localloc ∪ {j}

lchosen← locsel(x)(Loc)

if lchosen ∈ localglob

then






send(lchosen, 1)

for each j ∈ (local \ {lchosen})
do send(j, 0)

else

{
for each j ∈ localloc do send(j, 1)

for each j ∈ localglob do send(j, 0)

for each j ∈ local do b receive(j)

for each j ∈ local do send(j)
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Pseudocode 4.3: Local agent’s algorithm

while true





localgen← {(j, k) ∈ U × Pi; x(i, j, k) > 0}
genact← hashmap(U × Pi, Act)

act← 0

reply ← 0

if #localgen = 0

then






send(MA,null)

b receive(MA)

send(MA,null)

b receive(MA)

else






for each g ∈ localgen

do

{
b receive(g, act)

genact[g]← act

gchosen← agseli(x)(Act)

REPORT (genact[gchosen], gchosen)

function report(act, chosen)

send(MA, act)

b receive(MA, reply)

if reply

then send(chosen, 1)

else send(chosen, 0)

for each g ∈ (localgen \ chosen) do send(g, 0)

for each g ∈ localgen do b receive(g)

send(MA)

b receive(MA)

for each g ∈ localgen do send(g)

The master agent (see Pseudocode 4.2) waits for all re-

quests from each location and then chooses randomly one lo-

cation. If this location asks for permission to perform a global

action, then this permission is granted and all other locations

are rejected. Otherwise all locations asking for permission to

perform a global action are rejected and all those asking for

permission to perform local actions – are granted. In the end,

the master agent waits once more for all locations to report

that their work is finished and let them try to perform a sub-

sequent action.

5. EMAS dynamics

At the observable moment at which the EMAS takes the

state x ∈ X all agents in all locations notify their local

agents of their intent to perform an action. All local agents

choose an agent using the distribution given by the function

agseli(x), i ∈ Loc and then notify the master agent of their

intent to let one of their agents perform an action. The master

agent chooses the location with the probability distribution

given by locsel(x).

The probability that in the chosen location i ∈ Loc the

agent wants to perform a local action is as follows:

ξi(x) =
∑

gen∈U

∑

n∈Pi

agseli(x)(gen, n) · ω(x, gen)(Actloc).

(17)

The probability that the master agent will choose the location

with the agent intending to perform a local action is:

ζloc(x) =
∑

i∈Loc

locsel(x)(i) · ξi(x). (18)

Of course the probability of choosing the global action by the

master agent is:

ζgl(x) = 1− ζloc(x). (19)

If the global action has been chosen then the probability of

passing from the state x ∈ X to x′ ∈ X can be computed

using Bayes rule as the sum over all possible sampling results

respecting Pseudocodes 4.1, 4.2, 4.3:

τgl(x)(x′) =
∑

i∈Loc

locsel(x)(i)




∑

gen∈U

∑

n∈Pi

agseli(x)(gen, n)· (20)




∑

α∈Actgl

ω(x, gen)(α) · ̺gen,n
α (x)(x′)







 .

Let us state a set of action sequences containing at least one

local action:

Act+1loc =
{

(α1, . . . , αs) ∈ Acts;
s∑

i=1

[αi ∈ Actloc] > 0

}
(21)

Let us define now the family of coefficients

{µαi,geni,ni
(x)}, i ∈ Loc, geni ∈ U, ni ∈ Pi, x ∈ X . If

the location i is nonempty in the state x, then µαi,geni,ni
(x)

is equal to the probability that in the i-th location the agent

aggeni,ni
chooses action αi:

µαi,geni,ni
(x) = agseli(x)(geni, ni) · ω(x, geni)(αi). (22)

Of course µαi,geni,ni
(x) = 0 if the agent aggeni,ni

does not exist in the location i in the state x, because

agseli(x)(geni, ni) = 0 in this case. Moreover, we set

µαi,geni,ni
(x) = 1 if the location i is empty in the state

x. Next we introduce the multi-index:

ind =
(
α1, . . . , αs; (gen1, n1), . . . , (gens, ns)

)

∈ IND = Acts+1loc ×
s∏

i=1

(U × Pi).
(23)

The probability that in the state x, agents aggeni,ni
choose

the actions αi in consecutive locations is given by:

µind(x) =

s∏

i=1

µαi,geni,ni
(x). (24)

Similarly as in the previous case the probability of passing

from the state x ∈ X to x′ ∈ X for the system running in

parallel can be computed using Bayes rule as the sum over
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all possible sampling results respecting Pseudocodes 4.1, 4.2,

4.3:

τ loc(x)(x′)

=
∑

ind∈IND

µind(x)(π
ind
1 ◦ , . . . , ◦ πind

s )(x)(x′), (25)

where

πind
i (x) =

{
̺geni,ni

αi
(x), αi ∈ Actloc and i is nonempty

ϑnull, αi ∈ Actgl or i is empty.
(26)

The definition of the coefficient µαi,geni,ni
(x) and the above

formula (26) show in particular that the action null is execut-

ed in every location instead of the selected global action and

formally in all empty locations.

Let us observe that the value of (πind
1 ◦ , . . . , ◦ πind

s )(x)(x′)
does not depend on the composition order because transition

functions associated with local actions commutate pairwise

(see Proposition 3.1 and Corollary 6.1). It validates the fol-

lowing observation.

Observation 5.1. The probability transition function for the

EMAS model is given by the formula

τ(x)(x′) = ζgl(x) · τgl(x)(x′) + ζloc(x) · τ loc(x)(x′) (27)

and Eqs. (17)–(26).

Observation 5.2. The stochastic state transition of EMAS giv-

en by Eq. (27) satisfies the Markov condition. Moreover, the

Markov chain defined by these functions is stationary.

Proof. All transition functions and probability distributions

given by Eqs. (17)–(26) depend only on the current state of

the system, which motivates the Markovian features of the

transition function τ given by (27). The transition functions

do not depend on the step number at which they are applied,

which motivates the stationarity of the chain.

6. EMAS sample actions

Let us consider the following set of actions:

Act = {get, repr,migr, clo, lse}, (28)

where get allows for the life energy exchange between com-

puting agents and may make the agent with low energy in-

active, repr activates the agent as an offspring agent in the

system, migr denotes migration of agents between two lo-

cations, clo activates the agent as a mutated clone agent in

the system, whereas lse allows to incorporate the local search

methods into EMAS. Such sample set of actions cover almost

all search activities appearing in GA and MA as selection,

mutation, crossover and local optimization.

Let us denote by l the location of the current active agent

containing the n-th copy of the genotype gen performing the

action (i.e. x(l, gen, n) > 0). Notice that if the particular state

x is established, the location of each active agent is unambigu-

ously determined. We use lower index “next” for denoting the

state which may appear in the next step assuming some cur-

rent state, e.g., xnext is the subsequent possible value of x.

6.1. Action performing distributed selection. The energy

transfer action get is based on the idea of agent rendezvous.

Agents meet one of their neighbors (it chooses randomly one

of its neighbors using the uniform distribution—agents from

the same location or “island”) and during this meeting a quan-

tum of energy ∆e flows in direction described by a certain

stochastic function cmp. The most probable direction is from

the worse evaluated agent to the better one, which may be

considered a kind of a tournament (see e.g. [62]).

Taking into account Observation 2.1 we may get the fol-

lowing

Observation 6.1. The probability transition function ̺gen,n
get :

X →M(X) associated with action get is determined by:

δgen,n
get |Xgen,n (x)(1) =

{
1 if NBAGl,gen,n 6= ∅
0 otherwise

(29)

NBAGl,gen,n =
{
(j, k) : x(l, j, k) > 0 and (j 6= gen or k 6= n)

}
(30)

ϑgen,n
get |Xgen,n (x)(x′)

=
1

#NBAGl,gen,n

∑

(gen,n)∈NBAGl,gen,n(
cmp(gen, gen′)(0) · [x′ = next(x, gen, n, gen′, n′)]

+cmp(gen, gen′)(1) · [x′ = next(x, gen′, n′, gen, n)]

)

(31)

cmp : U × U →M({0, 1}) (32)

next(x, a, b, a′, b′) = xnext :

xnext(i, j, k) =






x(i, j, k)−∆e if j = a and k = b

and i = l

x(i, j, k) + ∆e if j = a′ and k = b′

and i = l

x(i, j, k) otherwise

(33)

Explanation. The decision of the action get, δgen,n
get , defined

by Eq. (29), depends upon the existence of at least one neigh-

boring agent in the same location and is performed by check-

ing the contents of the NBAGl,gen,n set defined by Eq. (30).

The arbitrary state of the system when the decision is evalu-

ated by the agent aggen,n is denoted by x ∈ X .

The transition function uses the function cmp to com-

pare the meeting agents. This is a probabilistic function that

takes advantage of the fitness function ψ in order to compare

the agents. The genotype which has the better fitness has a

greater probability of getting the quantum of energy from its

neighbor. A lower probability is assigned to the reverse flow.

Technically, if cmp(gen, gen′) is sampled as 0 then agent

with the genotype gen increases its energy and the second
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agent with genotype gen′ looses its energy. If cmp(gen, gen′)
takes the sampled value 1 the energy is passed in the opposite

direction.

In the case of the positive evaluation of this decision, the

state transition described by Eq. (31) is performed. This for-

mula comes from Bayes’ theorem, which makes us check all

possible agents from NBAGl,gen,n. For each agent contained

in this set a different state transition is performed as described

by the function next(·, ·, ·, ·, ·). The direction of the energy

transfer is determined using the function cmp.

The state transition function is constructed according to

Eq. (33). The incidence matrix xnext ∈ X is obtained from

x by changing two entries related to the pair of agents

aggen,n, aggen′,n′ that exchanged energy.

Observation 6.2. The value of the probability transition func-

tion imposed by Eqs. (10), (11), (29) – (33) performed by

agent aggen,n present in the location l, depends only on the

elements of the system state contained in its location. The

action get may introduce changes only in entries of the state

associated with the location l. In other words, assuming x as

a current state, all states that differ from x outside the l-th
layer have a null probability in the next step.

Explanation. Observation 6.1 stems from Eqs. (10), (11), (29)

– (33). Part of them that introduce changes in the state en-

tries depends on and refers only to the entries in the current

l-th location. All other entries are simply rewritten to the next

state.

6.2. Actions inspired by the genetic operations. A decision

on the reproduction action repr is based on the idea of agent

rendezvous (similarly to get). An agent with sufficient ener-

gy (above a certain predefined threshold erepr) meets one of

their neighbors capable of reproducing (choosing it from the

neighbors having sufficient energy by random sampling with

uniform distribution), and creates an offspring agent based on

their solutions. The genotype of the offspring agent is selected

according to the predefined family of probability distributions

mix : U×U →M(U) associated with the sequence of genet-

ic operations (e.g., crossover followed by mutation, see [31]).

In particular, mix(gen, gen′)(gen′′) denotes the probability

that gen′′ is born of the parents gen and gen′. A part of the

parents’ energy (e0 = n0 ·∆e, n0 is even) is passed onto the

offspring agent.

Taking again into account Observation 2.1 we obtain the

following:

Observation 6.3. The probability transition function ̺gen,n
repr :

X → M(X) associated with the action repr is deter-

mined by:

δgen,n
repr |Xgen,n (x)(1)

=






1 if x(l, gen, n) > erepr and RPAGl,gen,n 6= ∅
and

∑r

j=1

∑
k∈Pl

[x(l, j, k) > 0] < ql

0 otherwise

(34)

RPAGl,gen,n =
{
(gen′, n′) ∈ NBAGl,gen,n;

x(l, gen′, n′) > erepr

}
(35)

ϑgen,n
repr |Xgen,n (x)(x′)

=
1

#RPAGl,gen,n

∑

(gen′,n′)∈RPAGl,gen,n

∑

gen′′∈U

mix(gen, gen′)(gen′′)

cpchoose(x, x′, gen, n, gen′, n′, gen′′) (36)

cpchoose(x, x′, gen, n, gen′, n′, gen′′)

=






[x′ = x] if FCl,gen′′ = ∅
1

#FCl,gen′′

∑

m∈FCl,gen′′

[x′ = next(x, gen, n, gen′, n′,

gen′′,m)]otherwise

(37)

where

FCl,gen′′ = {o ∈ Pl | x(l, gen′′, o) = 0} (38)

next(x, a, b, a′, b′, a′′,m) = xnext :

xnext(i, j, k) =





x(i, j, k)− e0

2 if j ∈ {a, a′} and k ∈ {b, b′}
and i = l

e0 if j = a′′ and k = m and i = l

x(i, j, k) otherwise

(39)

Remark 6.1. Note that if

r∑

j=1

∑

k∈Pl

[x(l, j, k) > 0] < ql,

which means that the location l is not full, then our assump-

tions guarantee that for every genotype gen

FCl,gen 6= ∅,
i.e. there is a copy number to take.

Explanation. The decision that the agent aggen,n performs

the action repr, i.e. δgen,n
repr (defined by Eq. (34)), is based on

the condition that there is at least one neighboring agent in the

same location and both agents have sufficient energy (higher

than erepr) to produce an offspring. This condition is verified

by checking the contents of the set RPAGl,gen,n defined by

Eq. (35). Therein, x ∈ X denotes the arbitrary state of the

system when the decision is evaluated by the agent aggen,n.

In the case of positive evaluation of this decision (i.e.,

there exists aggen′,n′ with sufficient energy) and enough space

in the location (i.e., the number of agents does not exceed ql),
the state transition described by Eq. (36) is performed. This

formula stems from Bayes’ theorem which makes us check

all possible agents from RPAGl,gen,n. For each agent con-

tained in this set a different state transition is performed as

described by function next(·, ·, ·, ·, ·, ·, ·). The probability of

choosing an agent is equal to (#RPAGl,gen,n)−1.
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The agent aggen,n that initiated the action with its

neighbor aggen′,n′ becomes a parent and selects the off-

spring agent genotype gen′′ using the probability distribution

mix(gen, gen′) ∈M(U). The offspring agent (aggen′′,n′′ ) is

created if there is enough room in the parental location (in

such a case there is always a free copy number: see Remark

6.2). If there are more than 1 inactive copies, the copy-number

n′′ of the offspring agent is selected with uniform probability

distribution – see Eqs. (37), (38)).

The state transition function is constructed in the way de-

scribed in Eq. (39). The incidence matrix xnext ∈ X is ob-

tained from x by changing entries related to agents aggen,n,

aggen′,n′ , aggen′′,n′′ . Part of the parents’ energy is passed to

the offspring agent with genotype gen′′, which is activated in

the location l (and whose energy is set to e0).

Observation 6.4. The value of the probability transition func-

tion imposed by Eqs. (10), (11), (34)–(39), performed by the

agent aggen,n present in the location l depends only on the

elements of the system state contained in its location. This

function does not introduce any changes in other locations as

well.

Explanation. Equations (34)–(39) involve only those entries

of the incidence matrix that are related to the location l, so

both assumptions of Definition 3.1 are satisfied straightfor-

wardly.

A decision on the migration actionmigr may be undertak-

en by an agent with enough energy to migrate if there exists

a location that is able to accept it (its number of agents does

not exceed the maximum). When these conditions are met the

agent is moved from its location to another one.

Observation 6.5. The probability transition function ̺gen,n
migr :

X →M(X) associated with action migr is determined by:

δgen,n
migr |Xgen,n (x)(1) =

{
1 if (x(l, gen, n) > emigr and #ACCLOCl > 0)

0 otherwise

(40)

ACCLOCl =

{
Loc \ {l} ∋ l′ : ((l, l′) ∈ Top) and




r∑

j=1

∑

k∈Pl′

[x(l′, j, k) > 0] < ql′




}

(41)

ϑgen,n
migr |Xgen,n (x)(x′) =

1

#ACCLOCl

∑

loc′∈ACCLOCl

1

#FCloc′,gen

∑

m∈FCloc′,gen

[x′ = next(x, gen, n, loc′,m)] (42)

where FCloc′,gen is given by Eq. (38) and

next(x, a, b, c,m) = xnext :

xnext(i, j, k) =






0 if i = l and j = a

and k = b

x(l, a, b) if i = c and j = a

and k = m

x(i, j, k) otherwise.

(43)

Explanation. The decision on the action migr, δgen,n
migr (de-

fined by Eq. (40)) is based on the condition that the agent

aggen,n has sufficient energy to migrate (higher than emigr ≥
erepr) and there is at least one neighboring location (l′) that is

able to accept the agent which wants to migrate (the number

of agents in this location does not exceed ql′ ), which is stated

by checking the contents of the ACCLOCl set defined by

Eq. (41). The arbitrary state of the system when the decision

is evaluated by the agent aggen,n is denoted by x ∈ X .

In case of positive evaluation of this decision, the state

transition described by Eq. (42) is performed. Again, the for-

mula comes from Bayes’ theorem which allows to check all

possible locations from ACCLOCl. For each location con-

tained in this set, a different state transition is performed as

described by the function next(·, ·, ·, ·). The probability of

choosing a location is equal to (#ACCLOCl)
−1. The agent

that initiated the action moves from its location (l) to another

one (l′) that is uniformly chosen from the set ACCLOCl. The

change of location requires a change of the migrating agent’s

copy number. A new number is chosen from the set of avail-

able copy numbers for the target location (if the location is

not full, this set is not empty: see Remark 6.2) according to

the uniform distribution.

The state transition function is constructed as described in

Eq. (43). The incidence matrix xnext ∈ X is obtained from

x by changing two entries related to the position of the agent

aggen,n in the location.

Observation 6.6. The value of the probability transition func-

tion imposed by Eqs. (10), (11), (40)–(43) performed by the

agent agj,k present in the location l does not depend only

on the elements of the system state contained in its location.

The action migr may introduce changes in the entries of state

associated with the location l and another location.

Explanation. Eqs. (40)–(43) include references to the ele-

ments of the system contained in the l-th and other locations.

The EMAS definition presented here is enriched with re-

spect to the one in [51, 52] by endowing it with a new cloning

and mutation action clo which allows a single agent to pro-

duce an offspring.

A decision on the cloning and mutation action clo is based

on checking the amount of agent’s energy only. An agent with

sufficient energy may create an offspring agent based on its so-

lution using the predefined family of probability distributions

mut : U →M(U) associated with genetic mutation (see e.g.

[31]). In particular, mut(gen)(gen′) denotes the probability

that gen′ is born of the parent gen. Part of the parent’s energy

(e1 = n1 ·∆e, n1 ∈ N) is passed onto the offspring agent.
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Taking again into account Observation 2.1 we may get the

following

Observation 6.7. The probability transition function ̺gen,n
clo :

X →M(X) associated with the action clo is determined by:

δgen,n
clo |Xgen,n (x)(1)

=






1 if x(l, gen, n) > erepr

and
∑r

j=1

∑
k∈Pl

[x(l, j, k) > 0] < ql

0 otherwise

(44)

ϑgen,n
clo |Xgen,n (x)(x′)

=
∑

gen′∈U

mut(gen)(gen′) · cpchoose1(x, x′, gen, n, gen′)

(45)

cpchoose1(x, x
′, gen, n, gen′)

=






[x′ = x] if FCl,gen′ = ∅
1

#FCl,gen′

∑

m∈FCl,gen′

[x′ =

next(x, gen, n, gen′,m)] otherwise

(46)

where FCl,gen′ is given by Eq. (38) and

next(x, a, b, a′,m) = xnext :

xnext(i, j, k) =






x(i, j, k)− e1 if j = a and k = b

and i = l

e1 if j = a′ and k = m

and i = l

x(i, j, k) otherwise

(47)

Explanation. The decision δgen,n
clo on the action clo defined

by Eq. (44) is based on the condition that the energy of the

agent exceeds the predefined threshold eclo, where x ∈ X
denotes the arbitrary state of the system when the decision is

evaluated by the agent aggen,n.

In the case of positive evaluation of this decision and

enough space in the location (the number of agents does not

exceed ql), the state transition described by Eq. (45) is per-

formed. As for the previous actions, this formula stems from

Bayes’ theorem. Depending on the target agent (after apply-

ing mutation operator), the state transition is performed as

described by the function next(·, ·, ·, ·, ·).
The state transition function is constructed in the way de-

scribed in Eq. (47). The incidence matrix xnext ∈ X is ob-

tained from x by changing entries related to agents aggen,n

and aggen′,n′ . Part of the parent’s energy is passed to the

offspring agent with genotype gen′, which is activated in lo-

cation l and whose energy is set to e0.

Observation 6.8. The value of the probability transition func-

tion imposed by Eqs. (10), (11), (44)–(47) and performed by

the agent aggen,n present in the location l, depends only on

the elements of the system state contained in its location. The

action clo will not introduce any changes in the other loca-

tion.

Explanation. In eqs. (44)–(47) entries of the incidence ma-

trix not related to the current l-th location remain intact. Also

the right hand sides of these equations do not involve these

entries.

6.3. Action resulting from the local search activation. Us-

ing a mechanism similar to the one included in the definition

of action clo we are able to represent local searches invoked

from particular points encoded by genotypes in U . The action

implementing the local search will be called lse. The agent

executing lse produces a new agent containing a new geno-

type gen′ resulting from the application of the local search

procedure loc starting from the parental genotype gen. The

local search may be invoked by an agent with sufficient energy

(greater than erepr), thus the decision function δgen,n
lse |Xgen,n

will have the same form as determined by Eq. (44).

The result of running the local method is characterized

by the function loc : U → M(U). In the case of stochas-

tic local search (e.g., a strictly ascending random walk) the

probability distribution loc(gen) characterizes the result of

running such method starting from the parental genotype gen.

Of course loc(gen) need not (and in general will not) be strict-

ly positive as we typically assume in the case of the genetic

mutation distribution mut(gen). In the case of deterministic

local method, loc(gen) takes strictly one positive value for

the genotype gen′ obtained from applying this local method

to gen. Of course the loc function depends on both the lo-

cal search algorithm, and the fitness landscape defined by the

neighborhood structure considered and the fitness function

corresponding to the optimization problem at hand.

Part e1 = n1 ·∆e, n1 ∈ N of the parent’s energy is passed

to the offspring in similar way as it is carried out during exe-

cution of the action clo. The above assumptions together with

the Observation ?? lead to the following:

Observation 6.9. The probability transition function ̺gen,n
lse :

X → M(X) associated with the action lse is determined

by the decision function δgen,n
lse |Xgen,n described by the Eq.

(44) and the actions’ kernel by the Eqs. (45)–(47) in which

the function mut : U → M(U) is replaced by the function

loc : U →M(U).

The above observation might be verified in the same way

as Observation 6.2 formulated and proven for the clo action.

Similarly, without additional verification we may accept the

following:

Observation 6.10. The value of the probability transition

function ̺gen,n
lse : X → M(X) imposed by the action lse

executed by the agent aggen,n present in the location l de-

pends only on the elements of the system state contained in

its location. The action lse does not introduce changes in other

locations.
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6.4. Action’s taxonomy. Observations 6.1, 6.4, 6.6, 6.8 and

6.10 may be summarized in the following corollary:

Corollary 6.1. Action migr is global, whereas actions get,
repr, clo and lse are local, i.e.

Actloc = {get, repr, clo, lse},
Actgl = {migr}.

Observation 6.11. The probability transitions imposed by ac-

tions get, repr, migr, clo and lse satisfy the Markov condi-

tion (see, e.g., [63]).

Explanation. The probability transitions of the actions ̺gen,n
get ,

̺gen,n
repr , ̺gen,n

migr , ̺gen,n
clo , ̺gen,n

lse given by Eqs. (10), (11), (29)–

(43) depend only on the current state x ∈ X of the system.

7. Ergodicity of EMAS

We intend to analyze some asymptotic features of the present-

ed model in order to draw significant conclusions regarding

the capabilities of localizing optima of a given function by

EMAS with actions definitions given in 6.

Theorem 7.1. Assume the following conditions hold.

1. The migration energy threshold is lower than the total en-

ergy divided by the number of locations emigr <
1
s
. This

assumption ensures that there will be at least one location

in the system in which an agent is capable of performing

migration (by gathering enough energy from its neighbors).

2. The quantum of energy is lower than or equal to the total

energy divided by the maximum number of agents that may

be present in the system ∆e ≤ 1P
s
i=1 qi

. This assumption

allows to achieve a maximal population of agents in the

system.

3. The reproduction (cloning) energy is lower than two energy

quanta erepr ≤ 2∆e.
4. The amount of energy passed from parent to child during

the action clo is equal to ∆e (so n1 = 1).

5. The maximum number of agents on every location is

greater than one, qi > 1, i = 1, . . . , s.
6. Locations are totally connected, i.e. Top = Loc2.

7. Each active agent can be selected by its local agent with

strictly positive probability, i.e.

∃ ιagsel > 0; ∀ i ∈ Loc,∀ gen ∈ U, ∀
n ∈ Pi, ∀ x ∈ {y ∈ X ; y(i, gen, n) > 0},
agseli(x)(gen, n) ≥ ιagsel.

8. The families of probability distributions being the parame-

ters of EMAS have uniform, strictly positive lower bounds:

∃ ιω > 0; ∀ x ∈ X, gen ∈ U,α ∈ Act,
ω(gen, x)(α) ≥ ιω,

∃ ιcmp > 0; ∀ gen, gen′ ∈ U,
cmp(gen, gen′) ≥ ιcmp,

∃ ιmut > 0; ∀gen, gen′ ∈ U,
mut(gen)(gen′) ≥ ιmut,

∃ 0 < ιlocsel < 1; ∀ x ∈ X,
∀ j ∈ Loc, locsel(x)(j) ≥ ιlocsel.

Then the Markov chain modeling EMAS (see Eq. (27)) is

irreducible, i.e. any states xb, xe ∈ X communicate.

Remark 7.1. Note that assumption 7 of Theorem 7 is reason-

able because the number of possible states of the system is

finite and so is the number of locations.

Remark 7.2. The definition of the space of states X (see Eq.

(2.2)) immediately implies that there already exists at least one

computational agent in EMAS and that at least one location

is nonempty at any time.

Because of the complexity, the detailed proof is postponed

to the appendix (see Appendix B).

Outline of the proof of Theorem 7.1. It will suffice to

show that the passage between two arbitrary EMAS states

(xb, xe ∈ X) may be performed in a finite number of steps

with a positive probability. We impose that the above men-

tioned passage may be performed by the following sequence

of stages (see Fig. 1).

Fig. 1. State transitions in irreducibility proof
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• Stage 0: In every location in parallel:

• If the location is full, the agent is chosen and it

performs sequentially the action get with one of its

neighbors in order to remove it (to enable incoming

migration from any other location, in case this loca-

tion is full). After removing one of its neighbors the

agent tries to perform any global action, e.g., migr
(and fails) until the end of the stage.

• If the location is empty, the trivial null state transition

is performed.

• If the population in the location contains at least one

agent, but is not full, this agent also attempts to per-

form the migr action (failing to do it) during the

whole stage. Final state of the Stage 0 is denoted by

x01.

• Stage 1: One location is chosen, at which the sum of

agents’ energy exceeds the migration threshold in the state

x01 (based on assumption 1 of Theorem 7 there must be at

least one agent). Then the agent aggen1,n1 from this loca-

tion (possibly possessing the largest energy in the state x0e)

is chosen. This agent performs a sequence of actions get in

order to gather all energy from all its neighbors, finally re-

moving them from the system (by bringing their energy to

zero). Now aggen1,n1 begins the first migration round in or-

der to visit all locations and to remove the agents (overtak-

ing their energy by performing multiple get actions). This

round is finished in the location i1. Now, the agent pos-

sesses the total energy of the system which equals 1. The

final state of Stage 1 is denoted by x12. Note that the state

matrix has only one positive entry x12(i1, gen1, n
′
1) = 1

where n′
1 ∈ Pi1 is the new copy number of the selected

agent after all migrations performed during the first round.

• Stage 2: The chosen agent aggen1,n′

1
performs the clo ac-

tion producing aggen2,n2 , n2 ∈ Pi1 , being one of the agents

present in the state in the location i2. The location i2 will

contain total energy greater than the migration threshold

emigr in the state xe. Next, the agent aggen1,n′

1
passes all

its energy to this newly produced agent, finally being re-

moved from the system. The purpose of Stage 2 is to ensure

that the agent recreating the population in the last location

i2 will be one of the agents present in this location in the

state xe.

• Stage 3: Next, the agent aggen2,n2 begins the second migra-

tion round (starting migration from the location i1) visiting

all locations. In every visited location i it performs the clo
operation producing one of the agents ag

gen
first
i

,n
first
i

that

will be present in this location in the state xe. The cloned

agent in each non-empty location will receive total energy

that should be assigned to its location in the state xe by

the sequence of get operations. The agent finishes migra-

tion in the location i2 (one of the islands containing a total

energy in the state xe greater than the migration threshold

emigr). For the sake of simplicity we will further call in the

same manner (ag
gen

first
i

,n
first
i

) the migrating agent after it

reaches the final i2 location.

• Stage 4: Every agent ag
gen

first
i

,n
first
i

present in each non-

empty location performs in parallel a sequence of cloning

actions recreating the population of agents in its location

in the state xe. The total number of parallel steps is not

greater than the maximum number of agents in the single

location in the state xe. Some agents may finish recreation

earlier, and in this case they will choose the action migr
(and fail to perform it) until the end of the stage.

• Stage 5: In every location in parallel: the agent active in

Stage 4 performs a sequence of get actions with its neigh-

bors in order to pass them the sufficient amount of energy

required in the state xe.

We have shown that every of the aforementioned stages

requires performing at most a finite number of Markov chain

steps. Moreover, we have shown that every aforementioned

sequence has non-zero probability. For the detailed proof of

the above features refer to Appendix B.

Remark 7.3. Theorem 7 leads us straightforwardly to the

statement that every possible state of EMAS is reachable af-

ter performing a finite sequence of transitions independently

on the initial population. Therefore, also the states containing

the extrema are reachable. Thus any metaheuristics respect-

ing EMAS architecture and the assumption of Theorem 7,

satisfies the asymptotic guarantee of success [36, 37].

Theorem 7.2. If the assumptions of Theorem 7 hold, then the

Markov chain modeling EMAS is aperiodic.

Proof. Let us consider a state of the chain such that every lo-

cation contains a single agent. In this case let us assume that

each agent chooses get as its next action. Because all agents

have chosen local actions, the master agent will allow them

all to perform their actions, however the absence of neigh-

bors will force all the agents to perform the trivial (i.e. null)

action. The transition probability function is then the s-fold

composition of ϑnull – see Eq. (25). Therefore in this case

the system will return to the same state in one step. The prob-

ability of such transition is not less than (ιget)
s > 0. It means

that the considered state is aperiodic. Our chain is irreducible

(see Theorem 7) and therefore it has only one class of states,

the whole state space, which obviously contains the consid-

ered aperiodic state. On the other hand, from Theorem 2.2 of

[64] we know that aperiodicity is a state class property. In our

case it means that all states of EMAS are aperiodic, which

concludes the proof.

The following corollary is a consequence of Theorems 7

and 1.

Corollary 7.1. The Markov chain modeling EMAS is ergodic.

Remark 7.4. The Markov chain (27) is ergodic in a strong

sense, namely it is not only irreducible, but also aperiodic.

Such chains are quite often called regular (see e.g. [64]). Ob-

viously it is also ergodic in a weaker (and also quite common)

sense, meaning that it is simply irreducible.
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Because the space of states X is finite we may introduce

the probability transition matrix:

Q = {τ(x)(y)}, x, y ∈ X (48)

where τ is the EMAS probability transition function – see

Eq. (27). The Markov chain describing the EMAS dynamics

is a sequence of random variables (or, equivalently, probabili-

ty distributions) {ξt} ⊂M(X), t = 0, 1, . . . where ξ0 should

be a given initial probability distribution. Of course we have

that

ξt+1 = Q · ξt, t = 0, 1, . . . (49)

Remark 7.5. From Theorems 7 and 1 as well as the ergodic

theorem [63] there exists a strictly positive limit ξ̂ ∈ M(X)

(i.e., ξ̂(x) > 0, ∀ x ∈ X) of the sequence {ξt} as t → +∞.

This equilibrium distribution does not depend on the initial

probability distribution ξ0.

8. Conclusions

The paper introduces a general stochastic model related to a

wide class of heuristic, population based search algorithms

with a special emphasis on the memetic ones. The individu-

als in these algorithms are active software agents (not passive

entities, as in classical EAs), characterized by a genotype and

a meme that can be changed during the optimization process.

The population can be spread among demes (evolutionary is-

lands) working in parallel. The actions includes a broad vari-

ety of optimization activities as the conventional mixing (e.g.

mutation, cloning, crossover), migrations among demes and

local optimization methods. We assume that both, genes and

memes belong to finite universa.

The model is composed of two parts. The first one

is EMAS architecture described by the data structures and

management strategies described in Secs. 2, 4, 6 and the

Pseudocodes 4.1, 4.2 and 4.3. This model allows for defin-

ing the space of states (see formula (2.2)) and the framework

for describing stochastic effect of agent’s actions (see formu-

las (4)–(10)). The second part is the stationary Markov chain

defined in terms of the EMAS architecture (see Sec. 5). In par-

ticular the general form of the probability transition function

was established (see formula (27)) and the Markov kernels for

sample actions were drawn (see Sec. 6 formulas (30)–(47)).

The class of global optimization metaheuristics that co-

incide with the proposed model is of great practical impor-

tance. The application of memetic algorithm being the most

advanced ones is depicted in Sec. 1.

We performed a detailed analysis of inter-actions depen-

dencies (see Sec. 3) In particular, we formulated and prove

precise mathematical criteria enabling to classify an action as

the global one, which has to be executed exclusively in the

whole system, or the local one, which can be performed in-

dependently with other local action in the separate location

(see Definition 3.1, Propositions A.1 and 3.1).

The double indexing of the computing agents aggen,n with

the time-varying number of copy n allows us to describe

the concurrent execution of actions representing mutation,

crossover and local search activation. This approach extends

the previous version of EMAS – see [52] – to the case in

which the most burdensome operations involving fitness eval-

uation can be run in parallel in a separate locations. On the

other hand, this kind of time dependent indexing makes it im-

possible to distinguish agents contained in the set Ag, which

is the main drawback of such a solution, making the present-

ed stochastic model less applicable for multi-agent software

systems with a predefined static set of agents. However, in

the context of memetic algorithms finding an objective’s min-

imizers, the identity of agents turns out to be less important.

In this situation the crucial agent’s attributes are the genotype

and life energy whereas the copy number plays only an auxil-

iary role. Nevertheless, the distinction of all agents that were

active during at least one time step is possible if we com-

pute a true agent identifier as a composition of the genotype

with the sequence of the agent’s copy numbers at subsequent

moments including 0 at the moments when the agent is not

active.

The ergodicity of the obtained Markov chain assigned to

the studied memetic metaheuristics was proven (see Theorem

7.1, Theorem 7.2, Corollary 7.1, Remark 7.4).

The obtained theoretical results are helpful for studying

important features of stochastic global optimization meta-

heuristics conforming EMAS architecture and implemented

as a concurrent system in a distributed computing environ-

ment.

The proper synchronization among agents designed re-

specting the classification of agent’s actions assures safeness.

Moreover the safe, coarse-grained parallel computation and

its effective, sub-optimal scheduling in a distributed comput-

er environment (computer cluster) might be obtained.

The proved strong ergodicity of the finite state Markov

chain modeling the metaheuristics (see Remark 7.4) causes

that it can reach an arbitrary state (arbitrary population) in

the finite number of iteration with the probability one which

implies the asymptotic stochastic guarantee of success (see

7.3). This condition imposes in particular liveness of the meta-

heuristic studied.

The Markov chain allows to obtain its sampling measure

in the arbitrary step by iterating the probability transition func-

tion. It constitutes the necessary basis for future asymptotic

studies e.g. various kinds of stochastic convergence of a stud-

ied metaheuristic (see [33, 35]).

Other possibility of further studying the memetic meta-

heuristics makes the thesis of Remark 7.5. In particular, the

behavior of the limit, equilibrium distributions by growing the

number of agent’s copies might be considered.

The theory presented here may be extended to the case of

memetic algorithms including immune mechanisms. Such a

model called iEMAS was also applied to the case of a contin-

uous state space and to very restricted agent’s features – see

[51, 52]. The formal verification of iEMAS ergodicity similar

to those presented in Theorems 7.1 and 7.2 will be an object

of our future research.
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Appendix A. Commutativity of local actions

Proposition A.1. Let ̺1, ̺2 : X → M(X) satisfy (13)

and (14) with l1 and l2, l1 6= l2 respectively (i.e. ̺1 = ̺gen,n
α

and ̺2 = ̺gen′,n′

α′ for some gen, gen′ ∈ U, n, n′ ∈ P so that

(gen, n) 6= (gen′, n′), x(l1, gen, n) > 0, x(l2, gen
′, n′) > 0,

x(l1)
Tx(l2) = 0 and for some α, α′ ∈ Act). Then

∑

y∈X

̺1(x)(y) · ̺2(y)(x
′) =

∑

y∈X

̺2(x)(y) · ̺1(y)(x
′) (50)

for all x, x′ ∈ X .

Proof. Let us fix x ∈ X . Denote by ̺2,1(x)(x
′) the left-

hand side of (50) and by ̺1,2(x)(x
′) the right-hand side of

the equation. First let us note that for x′ ∈ X such that

x(l) 6= x′(l) for some l /∈ {l1, l2} from (13) we obtain

̺1(x)(x
′) = ̺2(x)(x

′) = 0

as well as

̺2,1(x)(x
′) =

∑

y∈X
y(i)=x(i), i6=l1

̺1(x)(y) · ̺2(y)(x
′). (51)

But if y(i) = x(i) for i 6= l1 then x′(l) 6= y(l), hence we

obtain

̺2(y)(x
′) = 0.

Therefore for x, x′ ∈ X such that x(l) 6= x′(l) for some

l /∈ {l1, l2} we have

̺2,1(x)(x
′) = 0. (52)

Exchanging indices 1 and 2 in the previous considerations we

easily obtain formula (52) for ̺1,2.

It remains to prove (50) for x, x′ ∈ X such that x(i) =
x′(i) for all i /∈ {l1, l2}. To this end, we can once again apply

(13) to (51) obtaining

̺2,1(x)(x
′) =

∑

y∈X
y(i)=x(i), i6=l1
y(i)=x′(i), i6=l2

̺1(x)(y) · ̺2(y)(x
′) (53)

It is easy to see that in this case there is exactly one ŷ satisfy-

ing the conditions under the sum. It is given by the following

formula:

ŷ(i) =






x(i) = x′(i) for i /∈ {l1, l2},
x(l2) for i = l2,

x′(l1) for i = l1.

Hence (53) takes the following form.

̺2,1(x)(x
′) = ̺1(x)(ŷ) · ̺2(ŷ)(x

′) (54)

Since x(l2) = ŷ(l2) we can apply (14) to obtain

̺2(ŷ)(x
′) = ̺2(x)(ŷ

′)

with

ŷ′(i) =






x(i) = x′(i) for i /∈ {l1, l2},
x(l1) for i = l1,

x′(l2) for i = l2.

Therefore

̺2,1(x)(x
′) = ̺1(x)(ŷ) · ̺2(x)(ŷ

′) (55)

As this equality is symmetric with respect to the layer num-

ber, we can repeat the same reasoning obtaining exactly the

same result for ̺1,2(x)(x
′), which concludes the proof.

Appendix B. Proof of the Theorem 7.1

We precede the proof of Theorem 7.1 by a series of useful

technical lemmas.

Lemma B.1. Given the assumptions of Theorem 7.1, there

exists a positive constant 0 < ζ0 ≤ 1
2 such, that ζ0 ≤ ζgl(x)

and ζ0 ≤ ζloc(x) for all x ∈ X .

Proof. According to Formula (18)

ζloc(x) =
∑

i∈Loc

locsel(x)(i) · ξi(x)

where

ξi(x) =
∑

gen∈U

∑

n∈Pi

agseli(x)(gen, n) · ω(x, gen)(Actloc)

See Eq. (17). Because Actloc 6= ∅ and there always exists at

least one agent (see Remark 7.2) we have

ξi(x) ≥ ιagsel · ιω
for all x ∈ X and i = 1, . . . , s. Finally, because at least one

location contains an agent (see Remark 7.2 again) we may

evaluate

ζloc(x) ≥ ιlocsel · ιagsel · ιω = ζ0

for all x ∈ X . Replacing Actloc by Actgl (Actgl 6= ∅) we

similarly obtain

ζgl(x) ≥ ιlocsel · ιagsel · ιω = ζ0

for all x ∈ X . The constant ζ0 is strictly positive as it is

the product of strictly positive numbers. Moreover 2ζ0 ≤
ζgl(x) + ζloc(x) = 1 for all x ∈ X , so ζ0 ≤ 1

2 .

Lemma B.2. ∀gen ∈ U, l, l′ ∈ Loc; l 6= l′, n ∈ Pl, n
′ ∈

Pl′ , x, x
′ ∈ X so, that x(l, gen, n) > emigr , x(l

′, gen, n′) =
0,
x′(l′, gen, n′) = x(l, gen, n) we have

̺gen,n
migr (x)(x′) ≥ ιmigr =

1

(s− 1)maxi∈Loc{qi}
.

In other words, assuming the current state x, and the partic-

ular agent aggen,n ready to migrate from this state, all states

x′ containing this agent located in other locations than in x
are reachable with probability greater than or equal to ιmigr .

Proof. It follows straightforwardly from Eq. (42) describing

the migr action’s kernel ̺gen,n
migr .

Lemma B.3. If ∃ιmut > 0; mut(gen)(gen′) ≥
ιmut ∀gen, gen′ ∈ U then ∃ ιclo > 0 such

that ̺gen,n
clo (x)(x′) ≥ ιclo for each quadruple

(gen, n, x, x′), gen ∈ U, x, x′ ∈ X and for a certain lo-

cation l ∈ Loc satisfying:

• x(l, gen, n) > erepr, n ∈ Pl,
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• ∃ gen′ ∈ U, n′ ∈ Pl;

x′(l, gen′, n′) = ∆e, x(l, gen′, n′) = 0,

• ∑a∈U,b∈Pl
[x(l, a, b) > 0] < ql.

Roughly speaking, assuming the current state x, and the par-

ticular agent aggen,n ready for cloning in this state, all states

x′ containing an additional agent (cloned by aggen,n) are

reachable with probability greater than or equal to ιclo in-

dependently upon x and x′. Of course, the set of possible x′

may be empty if the location of the cloning agent is full in

the state x.

Proof. First of all, we may observe that if x satisfies the as-

sumptions of the lemma, then the decision is positively eval-

uated, i.e. δgen,n
clo (x)(1) = 1. On the other hand, the third as-

sumption implies that there is at least one inactive agent in the

system. Let us denote the signature of this agent by (gen′, n′).
If it was activated in the i-th location by the cloning operation,

then the next state would satisfy x′(l, gen′, n′) = ∆e with

probability 1. Then according to Eq. (38) the set FCl,gen′

would be nonempty. Furthermore, taking into account (46),

(45) we obtain

̺gen,n
clo (x)(x′) = ϑgen,n

clo (x)(x′)

>
ιmut

maxi∈Loc{qi} − 1
= ιclo > 0.

Lemma B.4. If ∃ ιcmp > 0; cmp(gen, gen′) ≥
ιcmp ∀gen, gen′ ∈ U then ∃ ιget > 0 such that

̺gen,n
get (x)(x′) ≥ ιget and ̺gen,n

get (x)(x′′) ≥ ιget for each tuple

(gen, n, x, x′, x′′), gen ∈ U, n ∈ Pl, x, x
′, x′′ ∈ X and for

a certain location l ∈ Loc satisfying:

• x(l, gen, n) > 0, n ∈ Pl,

• ∃ gen′ ∈ U, n′ ∈ Pl;
(gen, n) 6= (gen′, n′), x(l, gen′, n′) > 0,

• x′(l, gen′, n′) = x(l, gen′, n′) + ∆e,
x′(l, gen, n) = x(l, gen, n)−∆e,
x′′(l, gen′, n′) = x(l, gen′, n′)−∆e,
x′′(l, gen, n) = x(l, gen, n) + ∆e,
x′′(l, j, k) = x′(l, j, k) = x(l, j, k),
∀ j 6= gen, j 6= gen′, k 6= n, k 6= n′.

In other words, assuming the current state x, and a pair of

agents aggen,n, aggen′,n′ active in this state in the same lo-

cation, both states x′, x′′ in which the agent aggen,n takes or

gives the quantum ∆e of energy to/from its neighbor aggen′,n′

are reachable with probability greater than or equal to ιget.

This probability does not depend on the state x or pair of the

neighboring agents aggen,n, aggen′,n′ .

Proof. First of all, we may observe that if x satisfies the con-

ditions assumed in the lemma then the decision is positively

evaluated δgen,n
get (x)(1) = 1, because NBAGl,gen,n (see Eq.

(30)) is nonempty. Then according to Eqs. (31)–(33)

̺gen,n
get (x)(x′) = ϑgen,n

get (x)(x′)

>
ιcmp

(maxi∈Loc{qi})− 1
= ιget > 0.

The same reasoning leads to ̺gen,n
get (x)(x′′) > ιget.

Lemma B.5. Let Ai be an event (e.g. denoting, that certain

agents perform certain actions) in the i-th step. Then A1 ∩
. . . ∩ Ak is an event consisting of events A1, . . . , Ak taking

place consecutively in subsequent steps 1, . . . , k. If P (A1) >

λ1 > 0 and the conditional probabilities P (Ai|
⋂i−1

j=1 Aj) are

bounded from below by λi > 0 for i = 2, . . . , k, then

P

(
k⋂

i=1

Ai

)
≥

k∏

i=1

λi > 0. (56)

Proof. Considering the sequence of (possibly dependent)

events A1, . . . , Ak and starting from the well-known condi-

tional probability formula P (A1 ∩A2) = P (A1) ·P (A2|A1),
the following equation

P

(
k⋂

i=1

Ai

)
= P (A1) ·

k∏

i=2

P



Ai

∣∣∣∣∣∣

i−1⋂

j=1

Aj



 (57)

may be proven inductively, which is enough to prove the lem-

ma.

Proof of Theorem 7.1 – detailed estimations. It will suf-

fice to show that the passage between two arbitrary EMAS

states (xb, xe ∈ X) may be performed in a finite number of

steps with a positive probability. We have already shown (see

Outline of the proof of Theorem 7.1, Sec. 7) that the pas-

sage mentioned above may be performed by the sequence of

stages 1 – 5 described there and illustrated in Fig. 7. Now it is

enough to estimate the upper bounds for the number of steps

required to perform each of these stages and then the lower

bound of the probability of series of actions executed in these

steps.

Lemma B.6. Given the assumptions of Theorem 7.1, Stage 0

requires at most st0 = m−1 steps in parallel taken with prob-

ability greater than or equal to pr0 > 0, where m stands for

the number of possible energy values that might be possessed

by the agent (see Subsec. 2.1).

Proof. In each parallel step performed during this stage we

divide the set of locations into three distinct sets:

• Loc∅: empty locations (containing no active agents) – there

is no activity there.

• Locget: locations containing the maximum number of

agents (qi): one of the existing agents aggeni,ni
is selected

and it performs a sequence of get actions in order to re-

move one of its neighbors aggen′

i
,n′

i
. Both agents are fixed

during the Stage 0. After removing its neighbor, the agent

begins to perform the global action migr and fails (reject-

ed to do it by the master agent), until the end of the Stage

0.

• Locmigr = Loc\(Loc∅∪Locget): other locations in which

one of the existing agents performs the global action migr
and fails (rejected by the master agent), until the end of the

Stage 0.
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The probability of performing a single step of the de-

scribed sequence is given by:

ζloc(z)
∏

i∈Locget

(
agseli(z)(geni, ni) · ω(geni, z)(get)·

δgeni,ni

get (z)(1) · ̺geni,ni

get (z′i)(z
′′
i )
)

∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)

≥ ζ0
∏

i∈Locget

(ιagsel · ιω · ιget) ·
∏

i∈Locmigr

(ιagsel · ιω)

≥ ζ0 (ιagsel · ιω · ιget)
s

(58)

where

• z is the current state of the system. It is set to xb in the be-

ginning of Stage 0 and the final state of this stage z equals

to x01,

• z′i, z′′i are intermediate states that make it possible to ex-

press the parallel execution of the action get in all locations

in Locget. The state z′′i is a result of execution of the action

get in the i-th location, starting from the state z′i. The order

of locations from Locget in Eq. (58) is arbitrary, because

the get action is local (see Observation 6.1). z′i = z for the

first location from Locget, z
′
j = z′′i where j is a location

next to i in Eq. (58). The state z becomes z′′i at the end of

the sequence of intermediate steps.

It is easy to see that the estimation given in Eq. (58) is uni-

form for all steps in Stage 0. The maximum number of steps is

bounded from above by st0 = m− 1 because it is maximum

possible energy for an agent.

Assume At is an event that consists in performing the t-th
step described above, according to Lemma 8, the probability

of the whole sequence can be bounded from below by:

pr0 = (ζ0 (ιagsel · ιω · ιget)
s
)
m−1

> 0. (59)

Lemma B.7. Given the assumptions of Theorem 7 and as-

suming Stage 0 to have been completed, Stage 1 requires at

most st1 = s(m − 1) + s − 1 steps taken with probability

greater than or equal to pr1 > 0.

Proof. Following the assumptions of Theorem 7.1 there must

be at least one location i ∈ Loc with the total amount of

energy greater than the migration threshold emigr (of course

at least one agent must be present there). An agent aggen1,n1

is chosen from this location.

At each step of this stage the set of locations can be di-

vided into three distinct sets:

• Loc∅: empty locations (containing no active agents) – there

is no activity there.

• Locget: #Locget = 1, single location containing the agent

chosen at the beginning of the stage that performs a se-

quence of get actions in order to remove its neighbors (if

they exist) in this location. Following the proof of Lem-

ma 8 we may estimate the number of steps necessary to

perform this sequence as m− 1.

• Locmigr : other locations. The agents present in other non-

empty locations are trying to perform the global action

migr but their requests are rejected by the master agent.

The probability of performing one action get in the se-

quence discussed is given by:

ζloc(z)

(
agseli(z)(gen1, nξ) · ω(gen1, z)(get)·

δ
gen1,nξ

get (z)(1) · ̺gen1,nξ

get (z)(z′)

)

·
∏

j∈Locmigr

(
agselj(x)(genj , nj) · ω(genj, z)(migr)

)

≥ ζ0 (ιagsel · ιω · ιget)

·
∏

i∈Locmigr

(ιagsel · ιω) ≥ ζ0 · ιagsel · ιω · ιget (60)

where z is the current state of the system. It is set to x01 at the

beginning of Stage 1 and the final state of this stage z equals

x12. The copy number of the chosen agent nξ is equal to n1

at the beginning of Stage 1 and then changes according to the

migration rule becoming n′
1 ∈ Pi1 at the end of this stage.

Note that the estimation given by Eq. (60) does not depend

on the number of the step in the Stage 1. Then, the probability

of removing all agents from a single location is given by:

(ζ0 · ιagsel · ιω · ιget)
m−1

. (61)

After the removal of all its neighbors the chosen agent has

to perform migration. The probability of this step is given by:

ζgl(z) · locsel(z)(i)
(
agseli(z)(gen1, nξ) · ω(gen1, z)(migr)

δ
gen1,nξ

migr (z)(1) · ̺gen1,nξ

migr (z)(z′′)

)

≥ ζ0 · ιlocsel · ιagsel · ιω · ιmigr (62)

where z′′ is a state obtained after migrating of the chosen

agent from one location to another.

Let us assume that At is an event that consists in removing

all agents and migrating between the locations in the consec-

utive steps. The probability of each At may be evaluated by

Eqs. (61)–(62). According to Lemma B.5, the probability of

the whole sequence can be bounded from below by:

pr1 = (ζ0 · ιagsel · ιω · ιget)
s·(m−1)

(ζ0 · ιlocsel · ιagsel · ιω · ιmigr)
s−1

(63)

Moreover, the number of steps in the sequence may be esti-

mated by the constant st1 = s(m− 1) + s− 1.

Lemma B.8. Given the assumptions of Theorem 7 and as-

suming Stage 1 to have been completed, Stage 2 requires at

most st2 = m steps taken with probability greater or equal to

pr2 > 0.

Proof. There is only one agent aggen1,n′

1
in the system, so

in order to produce another agent using clo it needs to per-

form 1 step. Then, it passes all its energy to its offspring by

performing get action (m− 1) times.

Bull. Pol. Ac.: Tech. 61(1) 2013 273

Unauthenticated | 89.67.242.59
Download Date | 5/19/13 7:54 PM



A. Byrski, R. Schaefer, M. Smołka and C. Cotta

The probability of the first step of this sequence is as

follows:

ζloc(x12) · agseli1(x12)(gen1, n
′
1) · ω(gen1, x12)(clo)·

δ
gen1,n′

1

clo (x12)(1) · ̺gen1,n′

1

clo (x12)(z
′)

≥ ζ0 · ιagsel · ιω · ιclo (64)

where z′ is the state where aggen2,n2 was introduced into the

system after performing the cloning action by aggen1,n′

1
.

Now after cloning, the agent aggen1,n′

1
performs at most

(m− 1) times get action to pass all its energy to aggen2,n2 .

A single step of this sequence has the following probability:

ζloc(z)

(
agseli1(z)(gen1, n

′
1) · ω(gen1, z)(get)·

δ
gen1,n′

1
get (1) · ̺gen1,n′

1
get (z)(z′′)

)

≥ ζ0 · ιagsel · ιω · ιget (65)

where z is the current state (at the end of the stage z is equal

to x23) and z′′ is the state after aggen1,n′

1
passed a part of its

energy to aggen2,n2 .

Assuming At is an event that consists in performing the t-
th step of the sequence described above, according to Lemma

8, the probability of Stage 2 is evaluated from below by:

pr2 = ζ0 · ιagsel · ιω · ιclo · (ζ0 · ιagsel · ιω · ιget)
m−1 > 0 (66)

and st2 = 1 + (m− 1) = m.

Lemma B.9. Given the assumptions of Theorem 7 and as-

suming Stage 2 to have been completed, Stage 3 requires at

most st3 = (m+1)s steps taken with probability greater than

or equal to pr3 > 0.

Proof. Assuming Stage 2 to have been completed, there is

only one non-empty location i1 containing agent aggen2,n2 .

The agent starts the second round of migration by performing

the action migr. It is assumed that the path of this round is

composed of a sequence of locations that ends at the i2-th

location. The location i2 is one of the non-empty locations in

the state xe that contains total energy higher than the migra-

tion threshold emigr. The length of this path is at most s. Note

that the path is not intersecting, with the possible exception

of the last location.

The probability of migration of the agent aggen2,n2 be-

tween current location i to the next location of this path is

given by:

ζgl(z) · locsel(z)(i)
(
agseli(z)(gen2, nξ) · ω(gen2, z)(migr)

δ
gen2,nξ

migr (z)(1) · ̺gen2,nξ

migr (z)(z′)

)

≥ ζ0 · ιlocsel · ιagsel · ιω · ιmigr (67)

where z is the current state (in the beginning z = x23 at the

end of the stage z is equal to x34), z′ is a state obtained after

migrating of the agent aggen2,nξ
from current location i to

the next one along the mentioned path, nξ ∈ Pi is the current

copy number of the migrating agent.

Let us denote now by Locmigr ⊂ Loc a nonempty sub-

set of locations which does not contain the current loca-

tion in which ag
gen

first
i

,n
first
i

is cloned or feeded by the

life energy (i /∈ Locmigr). We assume that certain agents

aggenj ,nj
, j ∈ Locmigr try to perform global action migr

and their requests are rejected by the master agent.

The probability of each step in which the new agent

ag
gen

first
i

,n
first
i

is produced is evaluated by:

ζloc(z) · agseli(z)(gen2, nξ)

·ω(gen2, z)(clo) · δgen2,nξ

clo (z)(1) · ̺gen2,nξ

clo (z)(z′)
∏

j∈Locmigr

(agselj(z)(genj , nj) · ω(genj, z)(migr))

≥ ζ0 · ιagsel · ιω · ιclo · (ιagsel · ιω)s−1 (68)

where z is the current state and z′ is the state in which

ag
gen

first
i

,n
first
i

is created in the system and again nξ ∈ Pi is

the current number of copy of the migrating agent.

Now the agent passes the sufficient amount of energy

(required to bring the total sum of energy of the i-th loca-

tion to the value perceived in the system state xe) to agent

ag
gen

first
i

,n
first
i

by performing at most (m − 1) times get.

The probability of one get action is here as follows:

ζloc(z)

(
agseli(z)(gen2, nξ) · ω(gen2, z)(get)·

δ
gen2,nξ

get (z)(1) · ̺gen2,nξ

get (z)(z′′)

)

∏

j∈Locmigr

(agselj(z)(genj , nj) · ω(genj, z)(migr))

≥ ζ0 · ιagsel · ιω · ιget · (ιagsel · ιω)s−1 (69)

where z is the current state, z′′ is the state where aggen2,nξ

passed a part of its energy to ag
gen

first
i

,n
first
i

and nξ as in

the previous Eq. (68).

Assuming At to be the consecutive t-th event described

above, according to Lemma B.5, the probability of the whole

Stage 3 is bounded from below by:

pr3 =

(
ζ0 · ιlocsel · ιagsel · ιω · ιmigr ·

ζ0 · ιagsel · ιω · ιclo · (ιagsel · ιω)s−1

)s−1

(
ζ0 · ιagsel · ιω · ιget · (ιagsel · ιω)s−1

)m−1
> 0. (70)

The number of steps required for performing the whole se-

quence is st3 = 2 · (s− 1) + (m− 1).

Lemma B.10. Given the assumptions of Theorem 7 and as-

suming Stage 3 to have been completed, Stage 4 requires at

most st4 = maxi∈Loc{qi} steps taken with probability greater

than or equal to pr4 > 0.
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Proof. We divide the set of locations into three distinct sets:

• Empty locations Loc∅ ⊂ Loc (containing no active agents):

there is no activity there.

• Locations Locmigr ⊂ Loc in which one agent attempts to

perform migr action and fails (these locations contain one

agent in the final state xe or have just finished recreation

of the agents in the final state).

• Other locations Locclo ⊂ Loc in which one agent

ag
gen

first
i

,n
first
i

performs a sequence of the clo actions in

order to recreate the population of its neighbors (required

in the state xe).

The probability of this step may be evaluated by:

ζloc(z)
∏

i∈Locclo

(
agseli(z)(gen

first
i , nfirst

i )·

ω(genfirst
i , z)(clo)·

δ
gen

first
i

,n
first
i

clo (z)(1) · ̺gen
first
i

,n
first
i

clo (z′)(z′′)

)

∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)

≥ ζ0
∏

i∈Locclo

(ιagsel · ιω · ιclo)
∏

i∈Locmigr

(ιagsel · ιω)

≥ ζ0 (ιagsel · ιω ·min{ιclo, ιω})s
(71)

where z is the current state, z = x34 at the beginning and

z = x45 at the end of the stage, geni, ni is the quasi sig-

nature of an arbitrary agent in the location i ∈ Locmigr.

Note that the whole sequence of the clo actions on one lo-

cation may have length maxi∈Loc{qi} in the worst case, so

st4 = maxi∈Loc{qi}.
Assuming At to be an event that consists in performing

the t-th step of the sequence described above, according to

Lemma B.5, the probability of the whole sequence will be

bounded from below by:

pr4 = (ζ0 (ιagsel · ιω ·min{ιclo, ιω})s)maxi∈Loc{qi} > 0.
(72)

Lemma B.11. Given the assumptions of Theorem 7, Stage

5 requires at most st5 = m − 1 steps in parallel taken with

probability greater than or equal to pr5 > 0.

Proof. We divide the set of locations into three distinct sets:

• Empty locations Loc∅ ⊂ Loc (containing no active agents):

there is no activity there.

• Locmigr ⊂ Loc: in these locations, the agent tries to per-

form the global action migr but its requests are rejected

by the master agent (these locations contain one agent in

the final state xe or have just finished redistribution of the

agents’ energy in the final state).

• Other locations Locget ⊂ Loc: the agent containing the

highest amount of energy (ag
gen

first
i

,n
first
i

) performs a se-

quence of get actions in order to pass the sufficient amount

of energy to all its neighbors (required in the state xe).

After each agent ag
gen

first
i

,n
first
i

has finished distributing

energy it starts to perform the global action migr but its re-

quests are rejected, and waits for other agents to finish their

sequences. The locations containing exactly one agent behave

in the same way. In the worst case there will be (s−1) agents

performing this global action.

The probability of performing one of the get action of the

sequence described above is given by:

ζloc(z)
∏

i∈Locget

(
agseli(z)(gen

first
i , nfirst

i )·

ω(genfirst
i , z)(get)·

δ
gen

first
i

,n
first
i

get (z)(1) · ̺gen
first
i

,n
first
i

get (z′)(z′′)

)

∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)

≥ ζ0
∏

i∈Locget

(ιagsel · ιω · ιget)
∏

i∈Locmigr

(ιagsel · ιω)

≥ ζ0 (ιagsel · ιω ·min{ιget, ιω})s
(73)

where z is the current state, z = x45 at the beginning and

z = xe at the end of this stage and geni, ni is the quasi signa-

ture of an arbitrary agent present in the location i ∈ Locmigr.

Assuming At to be an event that consists in performing

the t-th step of the sequence described above, according to

Lemma B.5, the probability of the whole sequence will be

bounded from below by:

pr5 = (ζ0 (ιagsel · ιω ·min{ιget, ιω})s)
m−1

> 0. (74)

To conclude the proof of Theorem 7.1 let us note that

lemmas B.6–B.11 together state the fact that the total number

of steps necessary for passing between states xb and xe is not

greater than

st =
5∑

a=0

sta < +∞. (75)

Let us recall that all actions taken in the consecutive stages 0

– 5 are executable, assuming the completion of the previous

stages. The probability of completing each stage a = 1, . . . , 5
was bounded from below independently on the state imposed

by the previous stage by pra > 0. Thus the following positive

real number

pr =

5∏

a=0

pra > 0 (76)

estimates from below the probability of passing from xb to xe.

As the states were taken arbitrarily, we can show analogously

that one can pass from xe to xb with a positive probability,

which concludes the proof.

Appendix C. Computational example
Here, some highlights of experimental results are presented,

solely for illustration purposes of the applicability of the con-

structed model. Based on a dedicated software environment

implemented using Python technology, both EMAS (evolu-

tionary multi-agent system) and PEA (parallel evolutionary

algorithm) systems were implemented and used to generate
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the presented results. The configuration of the both systems

is presented as follows.

• Common parameters: normal distribution-based mutation

of one randomly chosen gene (described by the proba-

bility distribution mut(·)(·) in the model), single-point

crossover, the descendant gets parts of its parents geno-

type after dividing them in one randomly chosen point

(described by the probability distribution mix(·)(·) in the

model), qi = 30, 1 ≤ i ≤ s individuals located on each

island. All experiments were repeated 10 times and stan-

dard deviation was computed. Allopatric speciation (island

model), s = 3 fully connected islands, 3000 steps of ex-

periment, genotype of length 50, agent/individual migration

probability 0.01.

• PEA-only parameters: mating pool size equals to the num-

ber of individuals, individuals migrate independently (to

different islands).

• EMAS-only parameters: initial energy: e0 = 100, received

by the agents in the beginning of their lives, minimal re-

production energy: erepr = 90, required to reproduce, eval-

uation energy win/loose: eget = 40, passed from the loser

to the winner. The values presented in the model should

be computed in relation to the total energy in the system:

etotal = e0 ·
∑s

i=1 qi = 100 · 90 = 9000.

Memetic operators were implemented according to gradient-

free steepest descent algorithm based on choosing the best

from 10 potential mutated individuals. Such a procedure was

repeated 30 times and the best result was returned. These

memetic operators have been hybridized with EMAS in the

following way:

• Baldwinian memetics: the evaluation operator is enhanced

with local search algorithm. The evaluation of a certain

individual starts the local search from this individual and

returns the fitness of the solution found instead of the orig-

inal fitness value.

• Lamarckian memetics: a dedicated mutation operator is

called in the course of agent’s life, therefore its genotype

may be changed whenever this action is undertaken. It may

be used either during the mutation or at the arbitrarily cho-

sen moments of agent’s life, depending solely on agent’s

own decision.

Fig. 2. Comparison of results of PEA and EMAS computations Ackley, Axis Parallel Hyperellipsoid and De Jong benchmark functions).

Note the logarithmic scale on the Y-axis
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The problems under considerations were follows 50-

dimensional benchmark functions [65]:

• De Jong:

f(x) =
∑n

i=1 x
2
i ,−5.12 ≤ xi ≤ 5.12,

global minimum: f(x) = 0, xi = 0, i ∈ [1, n]
• Ackley:

f(x) = −a · e−b

√Pn
i=1

x2
i

n − e
Pn

i=1 cos(c·xi)

n + a+ e;
a = 20, b = 0.2, c = 2 · π, i ∈ [1, n],
−32.768 ≤ xi ≤ 32.768,

global minimum: f(x) = 0, xi = 0, i ∈ [1, n]
• Axis Parallel Hyperellipsoid:

f(x) =
∑n

i=1 i · x2
i ,−5.12 ≤ xi ≤ 5.12,

global minimum: f(x) = 0, xi = 0, i ∈ [1, n]

In Fig. 2, graphical comparison of EMAS and PEA com-

putations were shown. All the graphs show the averaged ex-

perimental results along with standard deviation to visualize

the dispersion of the experiments. It is easy to see, that in the

all presented cases, EMAS results were better than these ob-

tained from PEA, moreover, EMAS retained exploration and

exploitation balance, that may be observed as constant im-

proving of the result, while PEA apparently stuck in the local

extremum. It is to note that Lamarckian versions of both algo-

rithms found better results than the classical ones. Baldwini-

an versions were somewhat worse, their results can be easily

compared to these obtained by classical versions.
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