PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an idea of predicting durability of concrete structures with steel reinforcement under conditions of chloride and carbonation corrosion risk. Mechanisms of destruction due to steel corrosion in such conditions are shown. The recently elaborated model of carbonation and general model of chloride diffusion have been discussed. An algorithm of the rest service life time prognosis has been shown and options of its main stages realization have been done. An example of durability prognosis for pre-stressed hollow-core floor slab with upper layer of concrete and epoxy-resin coating has been given. This example confirms the usefulness of the described prognosis method and demonstrates its helpfulness in a structure management according to the standards of EN 1504 series.
Rocznik
Strony
173--181
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Building Research Institute, 1 Filtrowa St., 00-611 Warsaw, Poland
Bibliografia
  • [1] L. Czarnecki and P.H. Emmons, Repair and Protection of Concrete, Polski Cement, Krakow, 2002, (in Polish).
  • [2] Z. Ściślewski, Protection of Reinforced Constructions, Arkady, Warszawa, 1999, (in Polish).
  • [3] T. Łakomy, “Corrosion of reinforcement in bridges depending on concrete condition in structure”, Ph.D Thesis, Warsaw University of Technology, Warsaw, 2009, (in Polish).
  • [4] M. Fiertak and K. Nowak, “Depth of carbonation in selected structures - verification of theoretical models”, Protectionagainst Corrosion 5s/A/, 51-56 (2008), (in Polish).
  • [5] G. Wieczorek, Reinforcement Corrosion Initiated by Chloridesor Cover Carbonation, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2002, (in Polish).
  • [6] K. Slopkova, “Observing of state of steel reinforcement in concrete and process of its corrosion by effect of carbonization”, Proc. KONTRA 2002, 243-248 (2002).
  • [7] V. Papadakis, C. Vayenas, and M. Fardis, “Experimental investigation and mathematical modeling of the concret carbonation problem”, Chemical Engineering Science 46, 1333-1339 (1991).
  • [8] T. Ishida, K. Maekawa and M Soltani, “Theoretically identified strong coupling of carbonation rate and thermodynamic mois- ture states in micropores of concrete”, J. Advanced ConcreteTechnology 2 (2), 213-222 (2004).
  • [9] G. Fagerlund, Durability of Concrete Structure, Arkady, Warszawa, 1997, (in Polish).
  • [10] L. Czarnecki and P. Woyciechowski “Concrete carbonation as a limited process and its relevance to CO2 sequestration”, ACIMaterials J. 109 (3), 275-282 (2012).
  • [11] R. Więcławski, “Concrete carbonation in urban-industrial conditions”, Ph.D Thesis, Warsaw University of Technology Warsaw, 2002, (in Polish)
  • [12] L. Czarnecki and R. Więcławski, “Carbonation of concrete as limited process”, Proc. MATBUD‘2003 1, 117-125 (2003), (in Polish).
  • [13] L. Czarnecki and P. Woyciechowski, “Methods of evaluation of carbonation in concrete”, Building Materials 427 (2), 5-7 (2008), (in Polish).
  • [14] L. Czarnecki et al., Evaluation of the Efficiency of MigratingInhibitors of Steel Corrosion in Concrete, OficynaWydawnicza Politechniki Warszawskiej, Warszawa 2008, (in Polish).
  • [15] P.J. Tikalsky, D. Pustka, and P. Marek, “Statistical variations in chloride diffusion in concrete bridges”, ACI Structural J. 102 (3), 481-486 (2005).
  • [16] J. Kuziak, “Electrochemical study of the impact of selected inhibitors on the corrosion process of steel in concrete”, Ph.DThesis, Warsaw University of Technology Warsaw, 2010, (in Polish).
  • [17] P. Woyciechowski, J. Kuziak, and A. Krolikowski, “The concentration of chlorides in concrete and the threat of the corrosion of the reinforcement”, Protection against Corrosion 55 (6), 286-288 (2012), (in Polish).
  • [18] T. Ueda and K. Takewaka, “Performance-based standard specifications for maintenance and repair of concrete structure in Japan”, Structural Eng. Int. 17(4), 359-366, (2007).
  • [19] EN 14630:2007 Products and Systems for The Protection andRepair Of Concrete Structures. Test Methods. Determinationof Carbonation Depth in Hardened Concrete by the PhenolphthaleinMethod.
  • [20] EN 206-1:2003 Concrete. Part 1: Specification, Performance,Production and Conformity.
  • [21] PN-B-06265:2004 Complementary Polish Standard to PN-EN206-1:2003.
  • [22] DIN 1045-2: 2008 Anwendungsregeln zu DIN EN 206-1: Tragwerkeaus Beton, Stahlbeton und Spannbeton - Teil 2: Beton- Festlegung, Eigenschaften, Herstellung und Konformit ¨at, (in German).
  • [23] BS 8500-1:2006 Concrete. Complementary British Standardto BS EN 206-1, Method of Specifying and Guidance for theSpecifier.
  • [24] ACI 318-05 Building Code Requirements for Structural Concrete, ACI Committee 318 (2005).
  • [25] ACI 222R-01 Protection of Metals in Concrete against Corrosion, ACI Committee 222, (2001).
  • [26] EN 1504-9:2010 Products and Systems for the Protectionand Repair of Concrete Structures. Definitions, Requirements,Quality Control and Evaluation of Conformity. Part 9: GeneralPrinciples for Use Of Products and Systems.
  • [27] EN 1992-1-1:2008 Eurocode 2: Design of Concrete Structures. General Rules and Rules for Buildings.
  • [28] EN 1990:2004 Eurocode: Basis of Structural Design.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0098-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.