PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte-Carlo aided design of neutron shielding concretes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of design of building composites, like concrete is a complex one and involves many aspects like physical and mechanical properties, durability, shielding efficiency, costs of production and dismantlement etc. There are plenty of parameters to optimize and computer tools can help to choose the best solution. A computer aided design plays an important role nowadays. It becomes more accurate, faster and cheaper, so laboratories often apply computer simulation methods prior to field testing. In case of nuclear engineering, the radiation shielding problems are of much importance, because safety of such facilities is a key point. In this article the most effective methods for neutron shielding studies based on Monte-Carlo simulations of neutron transport and nuclide activation studies in concrete are presented. Two codes: MCNPX and CINDER’90 are extensively used to compare the shielding efficiency of commonly used concretes and to study the influence of concentration of B, Ba and Fe elements on shielding efficiency.
Słowa kluczowe
Rocznik
Strony
161--171
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Le Laboratoire d’Expertises Nucléaires en Assainissement et Conception, DSM/IRFU CEA – Saclay, Bât 130, F-91191 Gif sur Yvette Cedex, France
Bibliografia
  • [1] N. Metropolis and S. Ulam, “The Monte Carlo method”, J. American Statistical Association 44 (247), 335-341 (1949).
  • [2] Computer Code Collection, CCC-225, ANISN W. ORNL, USA.
  • [3] Computer Code Collection, CCC-226, DOT. ORNL, USA.
  • [4] L. Szymendera, K. Wincel, I. Sobolewska, D. Kordyasz, and A. Polanski, “SAMSY: a one-dimensional improved shielding code”, User’s Manual, INR 1691, 1971.
  • [5] I.I. Bashter, “Calculation of radiation attenuation coefficients for shielding concretes”, Annals Nucl. Energy 24 (17), 1389-1401 (1997).
  • [6] The MORSE code - A Multigroup Neutron and Gamma-RayMonte Carlo Transport Code, ORNL - 4585.
  • [7] MCNPX - Monte Carlo N-Particle Transport Code Systemfor Multiparticle and High Energy Applications; http://mcnpx.lanl.gov/ (2006).
  • [8] L.A. Rodríguez Palomino, J.J. Blostein, J. Dawidowski, and G.J. Cuellob, “Enhanced plastic neutron shielding for thermal and epithermal neutrons”, J. Instrumentation 3, 1-6 (2008).
  • [9] T. Hayashi, K. Tobita, Y. Nakamori, and S. Orimo, “Advanced neutron shielding material using zirconium borohydride and zirconium hydride”, J. Nuclear Materials 386-388, 119-121 (2009).
  • [10] Y. Sakuraia, A. Sasaki, and T. Kobayashi, “Development of neutron shielding material using metathesis-polymer matrix”, Nuclear Instruments and Methods in Physics Research A 522, 455-461 (2004).
  • [11] A.M. Sukegawa, Y. Anayama, K. Okuno, S. Sakurai, and A. Kaminaga, “Flexible heat resistant neutron shielding resin”, J. Nuclear Materials 417, 850-853 (2011).
  • [12] A. Morioka, S. Sakurai, K. Okuno, S. Sato, Y. Verzirov, A. Kaminaga, T. Nishitani, H. Tamai, Y. Kudo, S. Yoshida, and M. Matsukawa, “Development of 300◦C heat resistant boronloaded resin for neutron shielding”, J. Nuclear Materials 367-370, 1085-1089 (2007).
  • [13] O. Gencel, A. Bozkurt, E. Kamc, and T. Korkut, “Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions”, Annals of Nuclear Energy 38, 2719-2723 (2011).
  • [14] M.H. Kharita, M. Takeyeddin, M. Alnassar, and S. Yousef, “Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics”, Progress in Nuclear Energy 50, 33-36 (2008).
  • [15] L. Czarnecki and P. Lukowski, “Polymer-cement concretes” , Cement Lime Concrete 5, 243-258 (2010).
  • [16] T. Piotrowski, “Use of polymers in concrete for nuclear power plant construction”, Proc. ESPSC 2011, Eur. Symp. on Polymersin Sustainable Construction 1, 89-90 (2011).
  • [17] W.B.Wilson and T.R. England, A Manual for CINDER’90 VersionC00D and Associated Codes and Data, LA-UR-00-Draft, 2001.
  • [18] R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santandrea, E. Martinolli, L. Villate, N. Schwartz, and N. Guler, “Apollo2 year 2010”, Nuclear Engineering and Technology 42 (5), 474-499 (2010).
  • [19] B. Rapp, J.C. David, V. Blideanu, D. Doré, D. Ridikas, and N. Thiolli`ere, “Activation calculation of the EURISOL mercury target, EURISOL DS/Task5/TN-06-09”, http://www.eurisol.org (2006).
  • [20] M. Fassbender, W. Taylor, D. Vieira, M. Nortier, H. Bach, and K. John, “Proton beam simulation with MCNPX/CINDER’90: germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes”, Applied Radiationand Isotopes 70, 72-75 (2012).
  • [21] M. Kinno, K. Kimura, and T. Nakamura, “Raw materials for low-activation concrete neutron shields”, J. Nuclear Scienceand Technology 39 (12), 1275-1280 (2002).
  • [22] IAEA, Clearance Levels for Radionuclides in Solid Materials, IAEA-TECDOC-855, IAEA,Vienna,1996.
  • [23] P. Seltborg, A. Polanski, S. Petrochenkov, A. Lopatkin, W. Gudowski, and V. Shvetsov, “Radiation shielding of highenergy neutrons in SAD”, Nuclear Instruments and Methodsin Physics Research Section A 550, 313-328 (2005).
  • [24] T. Piotrowski, D. Tefelski, A. Polański, and J. Skubalski, “Monte Carlo simulations for optimization of neutron shielding concrete”, Cent. Eur. J. Eng. 2 (2), 296-303 (2012).
  • [25] H. Dinter, K. Tesch, and D. Dworak, “Doses due to neutrons and charged particles in the angular range 10◦ to 170◦ behind concrete shield of high-energy proton accelerators”, NuclearInstruments and Methods in Physics Research A 384, 539-543 (1997).
  • [26] S. Agosteo, A. Fass`o, A. Fermi, P.R. Sala, M. Silari, and P. Tabarelli de Fatis, “Double differential distributions and attenuation in concrete for neutrons produced by 100-400 MeV protons on iron and tissue targets”, Nuclear Instruments andMethods in Physics Research B 114, 70-80 (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0098-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.