PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational modelling of concrete behaviour under static and dynamic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of FE simulations of the concrete behaviour under quasi-static and dynamic loading. For quasi-static cyclic analyses, an enhanced coupled elasto-plastic-damage constitutive model has been used. To take the effect of the loading velocity into account, viscous and inertial terms have been also included. To ensure the mesh-independence and to properly reproduce strain localization in the entire range of strain rates, a constitutive formulation has been enhanced by a characteristic length of micro-structure by means of a non-local theory. Numerical results have been compared with some corresponding laboratory tests.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk-Wrzeszcz, Poland
Bibliografia
  • [1] Z.P. Baˇzant and J. Planas, Fracture and Size Effect in Concreteand Other Quasibrittle Materials, CRC Press, London, 1998.
  • [2] J. Tejchman and J. Bobiński, Continuous and DiscontinuousModeling of Fracture in Concrete Using FEM, Springer, Berlin, http://dx.doi.org/10.1007/978-3-642-28463-2, 2013.
  • [3] P. Moonen, J. Carmeliet, and L.J. Sluys, “A continuousdiscontinuous approach to simulate fracture processes”, PhilosophicalMagazine 88, 3281-3298 (2008).
  • [4] A. Winnicki, “Viscoplastic and internal discontinuity models in analysis of structural concrete”, Habilitation Monograph, Cracow University of Technology, Cracow, 2007.
  • [5] T. Jankowiak, “Failure criteria for concrete under quasi-static and dynamic loadings”, PhD Thesis, Poznań University of Technology, Poznań, 2009, (in Polish).
  • [6] R.R. Pedersen, “Computational modelling of dynamic failure of cementitious materials”, PhD Dissertation, TU Delft, Amsterdam, 2009.
  • [7] D. Karsan and J.O. Jirsa, “Behavior of concrete under compressive loadings”, J. Struct. Div. ASCE 95 (ST12), 2543-2563 (1969).
  • [8] H.W. Reinhardt, H.A.W. Cornelissen, and D.A. Hordijk, “Tensile tests and failure analysis of concrete”, J. Struct. Eng. ASCE 112, 2462-2477 (1986).
  • [9] D.A. Hordijk, “Local approach to fatigue of concrete”, PhDThesis, Delft University of Technology, Delft, 1991.
  • [10] J. Pamin and R. de Borst, “Stiffness degradation in gradientdependent coupled damage-plasticity”, Arch. Mech. 51 (3-4), 419-446 (1999).
  • [11] I. Marzec, J. Bobiński, and J. Tejchman, “Simulations of crack spacing in reinforced concrete beams using elastic-plasticity and damage with non-local softening”, Computers and Concrete 4 (5), 377-403 (2007).
  • [12] T. Majewski, J. Bobiński, and J. Tejchman, “FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression”, Eng. Structures 30 (2), 300-317 (2008).
  • [13] J. Mazars, “A description of micro- and macroscale damage of concrete structures”, J. Engrg. Fracture Mech. 25 (5/6), 729-737 (1986).
  • [14] M.G.D. Geers, “Experimental analysis and computational modeling of damage and fracture”, PhD Dissertation, Eindhoven University of Technology, Eindhoven, 1997.
  • [15] Abaqus Standard Users Manual Ver. 6.10, Hibbitt, Karlsson & Sorensen, Inc, Rhode Island, 2011.
  • [16] J. Lee and G.L. Fenves, “Plastic-damage model for cyclic loading of concrete structures”, J. Eng. Mechanics 124, 8, 892-900 (1999).
  • [17] I. Carol and K. Willam, “Spurious energy dissipation/ generation in stiffness recovery models for elastic degradation and damage”, Int. J. Solids Structures 33 (20-22), 2939-2957 (1996).
  • [18] P.H. Bischoff and S. H. Perry, “Compressive behaviour of concrete at high strain rates”, Mat. Struct. 24, 425-450 (1991).
  • [19] D. Zheng and Q. Li, “An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity”, Eng. Fracture Mechanics 71, 2319-2327 (2004).
  • [20] X.X. Zhang, G. Ruiz, G. R.C. Yu and M. Tarifa, “Fracture behaviour of high-strength concrete at a wide range of loading rates”, Int. J. Impact Eng. 36, 1204-1209 (2009)
  • [21] J. Oˇzbolt and H. W. Reinhardt, “Rate dependent fracture of notched plain concrete beams”, Proc. 7th Int. Conf. CONCREEP 7, 57-62 (2005).
  • [22] L.J. Malvar and C.A. Ross, “Review of strain rate effects for concrete in tension”, ACI Materials J. 95, 735-739 (1998).
  • [23] G. Gary, “Specific problems of concrete under large loading velocity”, in Scientific Report GRECO, ed. J.M. Reynouard, GRECO, Paris, 1990, (in French).
  • [24] P. Rossi, “A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates”, Materialsand Structures 24, 422-424 (1991).
  • [25] D. Zheng and Q. Li, “An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity”, Eng. Fracture Mechanics 71, 2319-2327 (2004).
  • [26] X.X. Zhang, G. Ruiz, G.R.C. Yu, and M. Tarifa, “Fracture behaviour of high-strength concrete at a wide range of loading rates”, Int. J. Impact Eng. 36, 1204-1209 (2009).
  • [27] S. Werner and K.-Ch. Thienel, “Influence of impact velocity on the fragment formation of concrete specimens”, Vortrag, Particles 1, 211-221 (2011).
  • [28] U. H¨ausler-Combe and T. Kuehn, “Failure modeling of concrete with a novel strain rate sensitive viscoelastic retarded damage material formulation”, Eur. Congress on ComputationalMethods in Applied Sciences and Eng. (ECCOMAS 2012) 1, CD-ROM (2012).
  • [29] L.J. Sluys, “Wave propagation, localization and dispersion in softening solids”, PhD Thesis, Delft University of Technology, Delft, 1992.
  • [30] P. Perzyna, “Fundamental problems in viscoplasticity”, Advancesin Applied Mechanics 9, 243-377 (1966).
  • [31] G. Pijaudier-Cabot and Z.P. Baˇzant, “Nonlocal damage theory”, ASCE J. Eng. Mech. 113, 1512-1533 (1987).
  • [32] R.B. Brinkgreve, “Geomaterial models and numerical analysis of softening”, PhD Thesis, Delft University of Technology, Delft, 1994.
  • [33] Z.P. Baˇzant and M. Jirásek, “Nonlocal integral formulations of plasticity and damage: survey of progress”, J. Engng. Mech. 128 (11), 1119-1149 (2002).
  • [34] C. Polizzotto, G. Borino, and P. Fuschi, “A thermodynamic consistent formulation of nonlocal and gradient plasticity”, Mech. Res. Communic. 25, 75-82 (1998).
  • [35] G. Borino, B. Failla, and F. Parrinello, “A symmetric nonlocal damage theory”, Int. J. Solids Struct. 40, 3621-3645 (2003).
  • [36] G.D. Nguyen, “A thermodynamic approach to non-local damage modelling of concrete”, Int. J. Solids and Structures 45 (7-8), 1918-1934 (2008).
  • [37] J. Bobiński and J. Tejchman, “Numerical simulations of localization of deformation in quasi-brittle materials within nonlocal softening plasticity”, Computers and Concrete 4, 433-455 (2004).
  • [38] M. Jirásek, “Nonlocal models for damage and fracture: comparison of approaches”, Int. J. Solids and Structures 35 (31-32), 4133-4145 (1998).
  • [39] M. Jirásek and S. Rolshoven, “Comparison of integral-type nonlocal plasticity models for strain-softening materials”, Int. J. Eng. Science 41 (13-14), 1553-1602 (2003).
  • [40] L. Str¨omberg and M. Ristinmaa, “FE-formulation of nonlocal plasticity theory”, Comput. Methods Appl. Mech. Engrg. 136, 127-144 (1996).
  • [41] G. Pijaudier-Cabot, K. Haidar, and J.F. Dube, “Non-local damage model with evolving internal length”, Int. J. Num. andAnal. Meths. in Geomech. 28, 633-652 (2004).
  • [42] A. Simone, “Continuous-discontinuous modelling of failure”, PhD Thesis, Delft University, Delft, 2003.
  • [43] I. Ferrara and M. di Prisco, “Mode I fracture behaviour in concrete: nonlocal damage modeling”, ASCE J. Eng. Mechanics 127 (7), 678-692 (2001).
  • [44] L. Skarżyński and J. Tejchman, “Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending”, Eur. J. Mechanics/A Solids 29, 746-760 (2010).
  • [45] L. Skarżyński, E. Syroka, and J. Tejchman, “Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams”, Strain, 47, e319-e332 (2011).
  • [46] E. Syroka-Korol, “Experimental and theoretical investigations of size effects in concrete and reinforced concrete beams”, PhDThesis, Gdańsk University of Technology, Gdańsk, 2012.
  • [47] M. Ortiz and I.C. Simo, “An analysis of a new class of integration algorithms for elastoplastic constitutive relation”, Int. Num. Methods in Engrg. 23, 353-366 (1986).
  • [48] T.J.R. Hughes and J. Winget, “Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis”, Int. J. Numerical Methods in Eng. 15, 1862-1867 (1980).
  • [49] J. Walraven and N. Lehwalter, “Size effects in short beams loaded in shear”, ACI Structural J. 91 (5), 585-593 (1994).
  • [50] L. Javier Malvar and J.E. Crawford, “Dynamic increase factors for concrete”, Twenty-Eighth DDESB Seminar 1, CD-ROM (1998).
  • [51] D. Yan, G. Lin, “Dynamic properties of concrete in direct tension”, Cement and Concrete Research 36, 1371-1378 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0098-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.