PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas sensors based on nanostructures of semiconductors ZnO and TiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a resistance structures with sensor layers based on nanostructures elaborated on the base of TiO2 and ZnO. The structures were tested concerning their sensitivities to the effects of nitrogen dioxide in the atmosphere of synthetic air. The TiO2 and ZnO nanostructures played the role of sensor layers. Investigations have proved that the elaborated resistance structures with TiO2 and ZnO layers are sensitive to the presence of NO2 in the atmosphere of synthetic air. The resistance of the structure amounted to about 20 in the case of ZnO structures and to about 200 in the case of TiO2 structures. The investigations confirmed that resistance structures with ZnO and TiO2, exposed to the effect of nitrogen dioxide in the atmosphere of synthetic air changes their resistances relatively fast. This indicates that such structures might be practically applied in sensors of nitrogen dioxide ensuring a short time of response.
Słowa kluczowe
Rocznik
Strony
853--859
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
  • Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Zampolli, I. Elmi, J. St¨urmann, S. Nicoletti, L. Dori, and G.C. Cardinali, “Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column”, Sensors and Actuators B: Chemical 105 (2), 400-406 (2005).
  • [2] D.D. Lee and D.K. Lee, “Environmental gas sensors”, IEEESensors J. 1, 214-224 (2001).
  • [3] D.L. Wang, A.T. Chen, Q.F. Zhang, and G.Z. Cao, “Roomtemperature chemiresistive effect of TiO2 nanowires to nitroaromatic and nitroamine explosives”, IEEE Sensors J. 11 (6), 1352-1358 (2011).
  • [4] Z. Bielecki, J. Janucki, A. Kawalec, J. Mikolajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stecewicz, and J. Wojtas, “Sensors and systems for the detection of explosive devices - an overview”, Metrol. Meas. Syst. 19 (1), 3-28 (2012).
  • [5] A. Murugarajan, G.L. Samuel, “Measurement modeling and evaluation of surface parameter using capacitive-sensor based measurement system”, Metrol. Meas. Syst. XVIII (3), 403-418 (2011).
  • [6] M. Kastek, T. Piątkowski, and P. Trzaskawka, “Infrared imaging Fourier transform spectrometer as the stand-off gas detection system”, Metrol. Meas. Syst. 18 (4), 607-620 (2011).
  • [7] Y.X. Yu and D.S. Xu, “Single-crystalline TiO2 nanorods: highly active and easily recycled photocatalysts”, Applied CatalysisB: Environmental 73 (1-2), 166-171 (2007).
  • [8] W. Zeng and T.M. Liu, “Gas-sensing properties of SnO2-TiO2- based sensor for volatile organic compound gas and its sensing mechanism”, Physica B: Condensed Matter 405 (5), 1345-1348 (2010).
  • [9] L. You, Y.F. Sun, J. Ma, and Y. Guan, “Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment”, Sensors and Actuators B: Chemical 157 (2), 401-407 (2011).
  • [10] W.W. Guo, T.M. Liu, and L. Huang, “Gas-sensing property improvement of ZnO by hierarchical flower - like architectures”, Materials Letters 65 (23-24), 3384-3387 (2011).
  • [11] T. Pustelny, E. Maciak, Z. Opilski, A. Piotrowska, E. Papis, and K. Golaszewska, “Investigation of ZnO sensing structure on NH3 action by means of the surface plazmon resonance method”, Eur. Physical J: Special Topics 154 (1), 165-170 (2008).
  • [12] W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Surface acoustic wave hydrogten gas sensor based on layered structure of palladium/meta-free phthalocyanine”, Bull. Pol. Ac.:Tech. 56 (2) 133-138 (2008).
  • [13] P. Struk, T. Pustelny, K. Golaszewska, E. Kamińska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with greting couplers based on ZnO”, Opto-electron. Rev. 19 (4), 462-467 (2011).
  • [14] T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37 (1-2) 187-194 (2007).
  • [15] B. Pustelny and T. Pustelny, “Transverse acoustoelectric effect applying in surface study of GaP:Te(111)”, Acta PhysicaPolonica A 116 (3), 385-388 (2009).
  • [16] H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, and Y. Liao, “A comparative study on UV light activated porous TiO2 and ZnO ?lm sensors for gas sensing at room temperature”, Ceramics Int. 38, 503-509 (2012).
  • [17] M. Gong, Y.H. Li, Z.H. Hu, and Z. Zhou, “Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers”, J. Physical Chemistry C 114, 9970-9974 (2010).
  • [18] G.S. Devi and T. Hyodo, and Y. Shimizu, “Synthesis of mesoporous TiO2-based powders and their gas-sensing properties”, Sensors and Actuators, B: Chemical 87, 122-136 (2002).
  • [19] C.M. Carney, S.H. Yoo, and S.A. Akbar, “TiO2-SnO2 nanostructures and their H2 sensing behavior”, Sensors and Actuators,B: Chemical 29, 108-122 (2005).
  • [20] E.D. Gaspera, M. Guglielmi, and S. Agnoli, “Au nanoparticles in nanocrystalline TiO2-NiO films for SPR-based, selective H2S gas sensing”, Chemistry of Materials 22, 3407-3417 (2010).
  • [21] D. Barreca, G. Carraro, and E. Comini, “Novel synthesis and gas sensing performances of CuO-TiO2 nanocomposites functionalized with Au nanoparticles”, J. Physical Chemistry C 115, 10510-10517 (2011).
  • [22] L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, and G. Chen, “Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity”, Sensors and Actuators,B: Chemical 159 (1), 1-7 (2011).
  • [23] T. Pisarkiewicz, T. Kenig, A. Radosz, and W. Maziarz, “Solution growth of ZnO sub-micro rods enhanced by electric field”, Bull. Pol. Ac.: Tech. 59 (4), 425-428 (2011).
  • [24] L. Huang, T. Liu, H. Zhang, W. Guo, and W. Zeng, “Hydrothermal synthesis of different TiO2 nanostructures: structure, growth and gas sensor properties”, J. Materials Science:Materials in Electronics 23, 1-6 (2012).
  • [25] S. Balaji, Y. Djaoued, J. Robichaud, “Phonon confinement studies in nanocrystalline anatase-TiO2 thin films by micro Raman spectroscopy”, J. Raman Spectroscopy 37 (12), 1416-1422 (2006).
  • [26] M. Urbańczyk, E. Maciak, K. Gut, T. Pustelny, and W. Jakubik, “Layered thin film nanostructures of Pd/WO3−x as resistance gas sensors”, Bull. Pol. Ac.: Tech. 59 (4), 401-406 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.