PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the lever propelling system for manual wheelchairs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article concerns the optimization of manual wheelchairs with a lever propelling system. Lever-driven manual wheelchairs are a promising wheelchair group, however they still need to be improved in order to compete successfully with classic manual push rim-driven wheelchairs. Also, despite all manual wheelchairs human work efficiency during propulsion plays an important role, there is not enough research carried out that would focus on this problem regarding lever-driven wheelchairs. The research, presented in this paper, according to the authors' intention, is to make this knowledge gap smaller. The article describes an analytical optimization method for adjusting important lever-drive system parameters - levers length and its axis of rotation position - to individual human anthropometry. The method is based on experimental data regarding maximum human push capabilities acquired in another study. The optimized parameters' values were determined after assessment of maximum human expendable energy during a single work phase (pushing the levers). As a result of this study authors determined optimal levers length and their axis of rotation position for a 50 percentile French male. The carried out research shows also, that the suboptimal area for positioning the levers axis of rotation is relatively wide.
Słowa kluczowe
Rocznik
Strony
793--800
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Transport, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa
Bibliografia
  • [1] L.H.V. Van der Woude, A.J. Dallmeijer, J. Annet, T.W.J. Janssen, W.J. Thomas, and H.E.J. Veeger, “Alternative modes of manual wheelchair ambulation: an overview”, Am. J. PhysicalMedicine & Rehabilitation 80, 765-777 (2001).
  • [2] L.A. Rozendaal, H.E.J. Veeger, and L.H.V. van der Woude, “The push force pattern in manual wheelchair propulsion as a balance between cost and effect”, J. Biomechanics 36, 239-247 (2003).
  • [3] G. Desroches, R. Dumas, D. Pradon, P. Vaslin, F.X. Lepoutre, and L. Cheze, “Upper limb joint dynamics during manual wheelchair propulsion”, Clinical Biomechanics 25, 299-306 (2010).
  • [4] L.H.V. Van der Woude, H.E.J. Veeger, A.J. Dallmeijer, T.W.J. Janssen, and L.A. Rozendaal, “Biomechanics and physiology in active manual wheelchair propulsion”, Medical Engineering& Physics 23, 713-733 (2001).
  • [5] L.H.V. Van der Woude, E. Botden, I. Vriend, D. Veeger, “Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency”, J. Rehabilitation Research andDevelopment 34, 286-94 (1997).
  • [6] A. Rifai Sarraj, R. Massarelli, F. Rigal, E. Moussa, C. Jacob, A. Fazah, and M. Kabbara, “Evaluation of a wheelchair prototype with non-conventional, manual propulsion”, AnnalsPhysical and Rehabilitation Medicine 53, 105-117 (2010).
  • [7] G. Harris, B. Ralph, and L.R. Bradshaw, U.S. Patent #5020815, One-Arm Lever Propulsion Accessory (1991).
  • [8] http://www.invacare.com.au, Invacare One Arm Driven byLever, Invacare Australia Pty Ltd.
  • [9] http://www.wijit.com, Wijit, 2270 Douglas Blvd., Suite 212 Roseville, CA 95661.
  • [10] http://www.leverdrive.com, Lever Drive, Cortical SysematicsLLC.
  • [11] http://riomobility.com, Rio Mobility Company, 2325 3rd St., Ste 242 San Francisco, CA 94107. Pivot Dual Lever Drive.
  • [12] http://www.jouleflow-water-features.com, Jouleflow Unit 5 Enterprise Court Park Farm Ind. Est. Wellingborough Northamptonshire NN8 6UW.
  • [13] http://www.forethoughtdesigns.com, EZ-2 Twin Lever, CableDrive Wheelchair, Steven Tidcomb Fore-Thought Designs.
  • [14] M. Hanna, U.S. Patent #5007655 - Sprocket-Rack Arrangement (1991).
  • [15] W. O. Lucken, U.S. Patent #4453729 - Dual Lever/RatchetPropulsion Mechanism (1984).
  • [16] Carl F. Drake, U.S. Patent #5941547 - Dual Lever Drive CablePropulsion Mechanism (1999).
  • [17] L.H.V. Van der Woude, A. Bouw, J. Van Wegen, H. Van As, H.E.J. Veeger, and S. De Groot, “Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation”, J. Rehabil. Med. 41, 143-149 (2009).
  • [18] M.S. Hallbeck, and D.L. McMullin, “Maximal power grasp and three-jaw chuck pinch force as a function of wrist position, age, and glove type”, Int. J. Industrial Ergonomics 11, 195-206 (1993).
  • [19] B.P. Kattel, T.K. Fredericks, J.E. Fernandez, and D.C. Lee, “The effect of upper extremity posture on maximum grip strength”, Int. J. Industrial Ergonomics 18, 423-+429 (1996).
  • [20] L. Lamoreaux and M.M. Hoffer, “The effect of wrist deviation on grip and pinch strength”, Clinical Orthopaedics andRelated Research 314, 152-155 (1995).
  • [21] R.J. Marley and R.R. Wehrman, “Grip strength as a function of forearm rotation and elbow posture”, 36 Proc. AnnualMeeting Human Factors and Ergonomics Society 1, 791-795 (1992).
  • [22] S.W. O’Driscoll, E. Horii, R. Ness, T.D. Cahalan, R.R. Richards, and K.N. An, “The relationship between wrist position, grasp size, and grip strength”, J. Hand Surgery 17A, 169-177 (1992).
  • [23] D.J. Habes, and K.A. Grant, “An electromyographic study of maximum torques and upper extremity muscle activity in simulated screwdriving task”, Int. J. Industrial Ergonomics 20, 339-346 (1997).
  • [24] D. Roman-Liu, and T. Tokarski, “Upper limb strength in relation to upper limb posture”, Int. J. Industrial Ergonomics 35, 19-31 (2005).
  • [25] A. Gedliczka, Atlas of Human Measurements: Data for Designand Ergonomic Evaluation, Central Institute for Labour Protection, Warszaw, 2001, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.