PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser modification of the materials surface layer - a review paper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The state of laser processing in surface materials modification in Poland is reported, based on own experience, coworkers and coauthors results, as well the literature review. The curriculum concerning historical development of lasers and laser technology in Poland, laser-matter interaction, as well basis of different laser techniques applied in materials surface engineering (solid state hardening, melting, alloying, cladding, ablation, shot peening, cleaning and texturing) are reviewed, and compared with results of coauthors, as well with a wide range of Polish authors papers. Finally, it is concluded that overall state of research on laser application in surface engineering in Poland is well developed and still growing industrial application is observed.
Rocznik
Strony
711--728
Opis fizyczny
Bibliogr. 132 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • AGH The University of Sciences and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland
Bibliografia
  • [1] T. H. Maiman, “Stimulated optical emission in ruby”, Nature 187, 493-494 (1960).
  • [2] B. Paszkowski, W. Wolinski, and M. Nowicki, “Some problems of laser beam welding and drilling”, Electron Technology 2 (1), 175-182 (1969).
  • [3] Z. Puzewicz and M. Slojewski, Laser Processing of FormedHoles, WAT, Warsaw, 1970, (in Polish).
  • [4] W. Wolinski and M. Nowicki, “Laser treatment of materials”, Trans. Institute of Electron Technology 10, 103-105 (1973).
  • [5] A. Sadowski and R. Krehlik, The Laser in Materials Processingand Metrology, WNT, Warsaw, 1973, (in Polish).
  • [6] M. Nowicki, Lasers in Electronic Technology and in MaterialsTreatment, WNT, Warsaw, 1978,
  • [7] J. Zimny, “Influence of the laser beam radiation parameters on technological effects of photonic holes processing in selected materials”, PhD Thesis, Cracow University of Technology, Cracow, 1975, (in Polish).
  • [8] J. Zimny, “The properties of laser beam machining (LBM) of machining-resistant alloys steels, Habilitation Thesis, Trans. Cracow University of Technology, Cracow, 1984, (in Polish).
  • [9] J. Kusinski, “Effect of the heating rate, time and temperature on the hypereutectoid tool steels homogeneity”, PhD Thesis, AGH-University of Sciences and Technology, Cracow, 1976, (in Polish).
  • [10] Z. Kwaczynski and R. Dzioch, “Tests of hardening steel by a continuous CO2 laser of 150 W power”, Metallography andHeat Treatment 41, 20-27 (1979), (in Polish).
  • [11] H. Andrzejewski and Z. Wieczynski, “Effect of basic technological parameters on the results of surface hardening by a laser beam”, Metallography and Heat Treatment 53-54, 24-28 (1981), (in Polish)
  • [12] J. Kusinski, “Laser melting of T-1 high speed steel” MetallurgicalTransactions A, 19A (2), 377-382 (1988).
  • [13] T. Burakowski and T. Straus, “Development of laser techniques for technological needs”, Metallography, Heat Treatment,Surface Engineering 88, 3-7 (1987), (in Polish).
  • [14] S. Kocanda, M. Lech-Grega, and D. Natkaniec, “Residual stresses in laser hardened elements made from 1045 steel” (in Polish), Bull. Military Tech. Academy 12 (3), 143-163 (1989).
  • [15] A. Wolynski and W. Waligora, “Effect of laser treatment on abrasive wear of 1045 steel”, Tribologia 3, 61-63 (1991), (in Polish).
  • [16] F. Kostrubiec and M. Walczak, “Microhardness of the surface layer of tungsten and molybdenum after recrystallisation with the laser radiation”, J. Engineering Materials and Technology 113, 130-34 (1991).
  • [17] T. Burakowski, “Lasers and their application in surface engineering”, Mechanic 5-6, 197-204 (1992).
  • [18] W. Napadlek, W. Przetakiewicz, and A. Gorka, “Laser saturation of low carbon steel by cladding of chromium”, Proc. V-th Int. Symp. Institute of Mechanical Vehicles of the MilitaryAcademy, 229-235 (1993), (in Polish).
  • [19] M. Steen and K. Watkins, Laser Material Processing, vol. 1, Springer-Verlag, New York, 2003.
  • [20] J. Dutta Majumdar and I. Manna, ”Laser material processing”, Int. Materials Reviews 56 (5/6), 341-88 (2011).
  • [21] J. Kusinski, Laser Applications in Materials Engineering, WN “Akapit”, Cracow, 2000, (in Polish).
  • [22] J. Dowden, The Theory of Laser Materials Processing: Heatand Mass Transfer in Modern Technology, Kanopus Publishing Limited, Bristol, 2009.
  • [23] M.S. Brown and C.B. Arnold, “Interaction and application to multiscale surface modification”, in Laser Precision Microfabrication, ed. K. Sugioka, Springer-Verlag, Berlin, 2010.
  • [24] J.F. Ready, “Effects due to absorption of laser radiation”, AppliedPhysics 36 (2), 462-468 (1965).
  • [25] E. Rimini, Laser and Electron Beam Interactions with Solidsand Materials Processing, pp. 15-49, Elsevier, New York, 1982.
  • [26] B. S. Yilbas, A. Sahin, and R. Davies, “Laser heating mechanism including evaporation process initiating the laser drilling”, Int. J. Mach. Tools Mf. 35 (7), 1047-1062 (1995).
  • [27] R. Domanski, Laser Radiation-Interaction with a Solid Matter, WNT, Warszawa, 1990, (in Polish).
  • [28] R. Parkitny, J. Winczek, H. Jabreen, and S.M. Thiab, “Temperature fields in steel elements irradiated by pulsed and continuous laser beam”, Proc. II Nat. Conf. on Surface Treatment 1, 129-135 (1993), (in Polish).
  • [29] J. Marczak, K. Jach, and A. Sarzynski, “Numerical modeling of laser-matter interaction”, Proc. SPIE 5146, 215-225 (2003).
  • [30] W.M. Steen and C.H.G. Courtney, “Surface heat treatment of EN 8 steel using a 2 kW continuous-wave CO2 laser”, MetalsTechnol. 12, 456-462 (1979).
  • [31] M.F. Ashby and K.E. Easterling, “The transformation hardening of steel surfaces by laser beams - I. Hypo-eutectoid steels”, Acta Metall. 32 (A11), 1935-1948 (1984).
  • [32] W.-B. Li, K.E. Easterling, and M.F. Ashby, “Laser transformation hardening of steel - II. Hypereutectoid steels”, Acta. Metall. 34, 1533-1543 (1986).
  • [33] H.E. Cline and T.R. Anthony, “Treating and melting material with a scanning laser or electron beam”, J. Appl. Phys. 48 (9), 3895-3900 (1997).
  • [34] T.R. Anthony and H.F. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying”, J. Applied Physics 48, 3888-3894 (1977).
  • [35] C. Chan, J. Mazumder, and M.M.Chen, “A two-dimensional transient model for convection in laser melted pool”, MetallurgicalTransactions 15A, 2175-2184 (1984).
  • [36] D. Sowdari and P. Majumdar, “Finite element analysis of laser irradiated metal heating and melting processes”, Optics& Laser Technology 42 (6), 855-865 (2010).
  • [37] J. Kusinski and G. Thomas, “Effect of laser hardening on microstructure and wear resistance in medium carbon/chromium steels”, Proc. Conf. on: Laser Processing, Fundamentals, Appl.and Systems Eng. 668, 150-157 (1986).
  • [38] J. Kusinski, M. Goly, and G. Kusinski, “Laser heat treatment of 30CrMnMo16-8 steel”, Materials Engineering 5, 1053-1056 (2006), (in Polish).
  • [39] A. Bylica and S. Adamiak, “Laser bean hardening of carbon steels”, Archives of Foundry 2 (6), 43-53 (2002).
  • [40] P.A. Molian and R. Baldwin, “Wear behavior of laser surface hardened gray and ductile cast irons, Part 1 - sliding wear”, J. Tribology 108, 326-333 (1986).
  • [41] J.L. Chen, Y.H. Geran, H.G. Wans, and J.T. Zhang, “A study on austenite transformation during laser heating“, J. MaterialsProcessing Technology 63 (1-3), 546-549 (1997).
  • [42] I.R. Sare and R.W.K. Honeycombe, “Splat cooling of ironmolybdenum- carbon alloys”, J. Mater. Sci. 13, 1991-2002 (1978).
  • [43] J. Straus and L. Szylar, “Problems of laser heat treatment of tool steels on the base of HS 6-5-2 steel”, Metallography,Heat Treatment, Surface Engineering 85 (1-2), 23-38 (1987), (in Polish).
  • [44] I. Singh, “Review on: laser-beam and photon-assisted processed materials and their microstructures”, J. Mater. Sci. 29, 5232-5258 (1994).
  • [45] J. Kusinski, “Microstructure, chemical composition and properties of the surface layer of m2 steel after laser melting under different conditions”, Appl. Surf. Sci. 36, 317-322 (1995).
  • [46] A. Bylica and A, Dziedzic, “Optimization of the laser and conventional heat treatment parameters on the structure and properties of SW7M high speed tool steel”, Solidification ofMetals and Alloys 36, 223-231 (1998), (in Polish).
  • [47] A. Bylica and A. Dziedzic, “Influence of the laser and conventional heat treatment parameters on the structure and properties of SW7M high speed tool steel”, Solidification of Metalsand Alloys 42, 275-283 (2000), (in Polish).
  • [48] S. Kac and J. Kusinski, “SEM structure and properties of ASP2060 steel after laser melting”, Surface and CoatingsTechnology 180-181, 611-615 (2004).
  • [49] J. Jaglarz and A. Grabowski, “Optical investigations of Al- Si/SiC composites subjected to laser CO2 annealing”, Opticsand Lasers in Engineering 48, 1038-1044 (2010).
  • [50] J. Kusinski, S. Kac, and G. Kusinski, “Microstructure and properties of laser remelted iron base amorphous coatings”, Materials Engineering 6, 492-497 (2009).
  • [51] F.E. Cunningham, “The use of lasers for the production of surface alloys”, M.S. Thesis, MIT, London, 1964.
  • [52] C.W. Draper, “Laser surface alloying: the state of the art”, J. Metals 34, 16-25 (1982).
  • [53] I. Smurov and M. Ignatiev, “Innovative intermetallic compounds by laser alloying”, in Laser Processing : SurfaceTreatment and Film Deposition, eds. J. Mazumder, O. Conde, R. Villar, and W. Steen, Kluwer Academic Publishers, London, 1996.
  • [54] F. Kostrubiec, “Distribution of concentration of gold in the process of laser alloying of the nickel surface layer”, J. MaterialsScience 26, 6044-6048 (1991).
  • [55] T. Didenko, “Laser surface melting - modelling and experimental verification of the melted zone shape and size, and chemical homogeneity”, PhD Thesis, AGH University of Science and Technology, Kraków, 2006, (in Polish).
  • [56] T. Didenko, J. Kusinski, and G. Kusinski, “Multiphase model of heat and mass transport during laser alloying of iron with electrodeposited chromium layer”, Proc. Multiscale andFunctionally Graded Materials Conf. 1, 640-646 (2006).
  • [57] T. Didenko, A. Siwek, and J. Kusinski, “Numerical modelling of the laser alloying process”, Proc. XI Conf.: Informatics inMetals Technology 1, 179-186 (2004).
  • [58] A. Woldan, J. Kusinski, and E. Tasak, “The microstructure of plain carbon steel laser-alloyed with silicon carbide”, MaterialsChemistry and Physics 81, 507-509 (2003).
  • [59] S. Kac, A. Radziszewska, and J. Kusinski, “Structure and properties of the bronze laser alloyed with titanium”, AppliedSurface Science 253, 7895-7898 (2007).
  • [60] L.A. Dobrzanski, M. Bonek, E. Hajduczek, and A. Klimpel, “Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser”, AppliedSurface Science 247, 328-332 (2005).
  • [61] L.A. Dobrzanski, E. Jonda, and K. Labisz, “The influence of laser modification on the structure and properties of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels”, Archives of Materials Sciences and Engineering 41 (2), 104-111 (2010).
  • [62] Lisiecki and A. Klimpel, “Diode laser gas nitriding of Ti6Al4V alloy”, Archives of Materials Science and Engineering 31, 53-56 (2008).
  • [63] J. Sieniawski, R. Filip, G. Mrowka, and E. Pleszakow, “Effect of laser treatment on microstructure of Ti-6Al-4V titanium alloys”, Proc. X-th Conf. on Achievements in Mechanical andMaterials Engineering 1, 523-526 (2001), (in Polish).
  • [64] R. Filip, “Laser nitriding of the surface layer of Ti6Al4V titanium alloys”, Archives of Materials Science and Engineering 30 (1), 25-28 (2008).
  • [65] M. Kulka and A. Pertek, “Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification”, Applied Surface Science 236, 98-105 (2004).
  • [66] M. Kulka and A. Pertek, “Gradient formation of boride layers by borocarburizing”, Applied Surface Science 254, 5281-5290 (2008).
  • [67] M. Kulka, N. Makuch, A. Pertek, and A. Piasecki, “Microstructure and properties of borocarburized and lasermodified 17CrNi6-6 steel”, Optics & Laser Technology 44, 872-881 (2012).
  • [68] M. Paczkowska W. Ratuszek, and W. Waligora, “Microstructure of laser boronized nodular iron”, Surface & CoatingsTechnology 205, 2542-2545 (2010).
  • [69] T. Burakowski and T. Wierzchon, Surface Engineering ofMetals- Principles, Equipment, Technologies, CRC Press, New York, 1999.
  • [70] H.J. Scussel, ASM Handbook on Friction, Lubrication, andWear Technology, ASM International, Materials Park, 1992.
  • [71] Z. Beidi, Z. Xiaoyan, T. Zengyi, Y. Shuguo, and C. Kun, “Coarse cemented WC particle ceramic-metal composite coatings produced by laser cladding”, Wear 170 (2), 161-166 (1993).
  • [72] M. Picasso, C.F. Marsden, J.D. Wagniere, A. Frenk, and M. Rappaz, “A simple but realistic model for laser cladding”, Metallurgical and Materials Transactions B 5B, 281-287 (1994).
  • [73] J. Choi and J. Mazumder, “Non-equilibrium synthesis of Fe- Cr-C-W alloy by laser cladding”, J. Materials Science 29 (17), 4460-4472 (1994).
  • [74] A. Belmondo and M. Castagna, Wear-Resistant Coatings byLaser Processing, Source-Book on Applications of the Laser Metal Working, ASM, London, 1981.
  • [75] J. Przybyłowicz, “Structure and exploative properties laser cladded cobalt alloys coatings”, PhD Thesis, AGH-University of Science and Technology, Kraków, 1999, (in Polish).
  • [76] A. Frenk and W. Kurz, “High speed laser cladding: Solidification conditions and microstructure of a cobalt-based alloy”, Mater. Sci. Eng. A 173, 339-342 (1993).
  • [77] J. Singh, “Laser surface cladding of Nickel-based alloys”, J. Metals 39, A85-A90 (1987).
  • [78] I. Smurov, “Laser cladding and laser assisted direct manufacturing”, Surf. Coat. Technol. 202, 4496-4502 (2008).
  • [79] J. Przybylowicz and J. Kusinski, “Laser cladding and erosive wear of Co-Mo-Cr-Si coatings”, Surface and CoatingsTechnology 125, 13-18 (2000).
  • [80] J. Przybylowicz and J. Kusinski, “Structure of laser cladded tungsten carbide composite coatings”, J. Materials ProcessingTechnology 109, 154-160 (2001).
  • [81] R. Jendrzejewski, A. Conde, J. de Damborenea, and G. Sliwinski, “Characterisation of the laser-clad stellite layers for protective coatings”, Materials and Design 23, 83-88 (2002).
  • [82] R. Jendrzejewski, G. Sliwinski, and A. Conde, “Laser cladding of Ni- and Co-based coatings for turbine industry applications”, Laser Technol. VII: Appl. Lasers 5229, 233-238 (2003).
  • [83] R. Jendrzejewski, I. Kreja, and G. Sliwinski, “Temperature distribution in laser-clad multi-layers”, Materials Science andEngineering A 379, 313-320 (2004).
  • [84] R. Jedrzejewski and G. S Sliwinski, “Investigation of temperature and stress fields in laser cladded coatings”, AppliedSurface Science 254, 21-925 (2007).
  • [85] A. Lisiecki and A. Klimpel, “Laser cladding of titanium alloy Ti6Al4V”, Archives of Manufacturing Engineering andAutomation 30 (1), 59-66 (2010).
  • [86] J. Singh, “Review: laser-beam and photon-assisted processed materials and their microstructures”, J. Materials Science 29, 5232-5258 (1994).
  • [87] B. Major, Ablation and Deposition with a Pulsed Laser, Akapit, Cracow, 2002, (in Polish).
  • [88] J. M. Lackner, Industrially-scaled Hybrid Pulsed Laser Depositionat Room Temperature, Orecop SC., Cracow, 2005.
  • [89] D.B. Chrisey and G.K. Hubler, Pulsed Laser Deposition ofThin Films, John Wiley & Sons, New York, 1994.
  • [90] C. Belouet, “Thin film growth by the pulsed laser assisted deposition technique”, Appl. Surf. Sci. 96-98, 630-642 (1996).
  • [91] H.U. Krebs, S. F¨uhler, and O. Bremert, “Laser deposition of metallic alloys and multilayers”, Applied Surface Science 86, 86-89 (1995).
  • [92] J.M. Lackner, W. Waldhauser, A. Alamanou, Chr. Teichert, F. Schmied, L. Major, and B. Major, “Mechanisms for selfassembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces”, Bull. Pol. Ac:. Tech. 58, 281-294 (2010).
  • [93] J. Sarna, R. Kustosz, R. Major, J.M. Lackner, and B. Major, “Polish Artificial Heart - material, technology, diagnostics”, Bull. Pol. Ac:. Tech. 58, 329-336 (2010).
  • [94] A.A. Voevodin, S.J.P. Laube, S.D. Walck, J.S. Solomon, M.S. Donely, and J.S. Zabinski, “Combined of magnetron sputtering and pulsed laser deposition of carbides and diamond-like films”, J. Applied Physics 78, 4123 (1995).
  • [95] M. Chmielowska, S. Villain, A. Kopia, J.P. Dallas, J. Kusinski, J.R. Gavarri, and Ch. Leroux, “Ce1−xNdxO2−_/Si thin films obtained by pulsed laser deposition: microstructure and conduction properties”, Thin Solid Films 516, 3747-3754 (2008).
  • [96] A. Kopia, “Microstructure investigation in thin films WO3 produced by pulsed laser deposition”, Solid State Phenomena 186, 164-167 (2012).
  • [97] A. Radziszewska, “Structural and chemical composition studies of pulsed laser deposited {_-Al-Mg} thin films”, J. Microscop. 237, 348-352 (2010).
  • [98] A. Radziszewska, “Structure and morphology of thin films deposited by pulsed laser technique”, Solid State Phenomena 186, 160-163 (2012).
  • [99] S. Kac and M. Kac, “Structure and properties of Al-Cu-Fe thin films deposited by PLD technique”, Materials Engineering 3, 368-371 (2010).
  • [100] L. Major, J. M. Lackner, and B. Major, “Multiscaled analysis of wear mechanism of titanium and carbon basis multilayer coatings”, Materials Engineering 1, 1-2 (2009).
  • [101] L. Major, “TEM Investigations of damage caused by indentation of multilayer TIVN/Ti/A-C-H coatings”, Solid StatePhenomena 186, 188-191 (2012).
  • [102] W. Mroz, A. Prokopiuk, M. Mularczyk-Oliwa, M. Jelinek, B. Major, W. Przetakiewicz, Z. Bojar, S. Jozwiak, D. Zasada, and K. Kasuya, “Nickel- and iron-based intermetallics deposited using KrF laser”, Applied Surface Science 197-198, 371-375 (2002).
  • [103] M.S. Brown and C.B. Arnold, “Fundamentals of lasermaterial interaction and application to multiscale surface modification”, Laser Precision Microfabrication, Series inMaterials Science 135, CD-ROM (2010).
  • [104] J. Marczak, “Restoration of art works with using laser radiation”, Mechanical Review 15-16, 37-40 (1997), (in Polish).
  • [105] J. Marczak, “Analysis and removal of encrustations from a variety of materials using a laser ablation technique”, HabilitationThesis, BEL-Studio, Warsaw, 2004, (in Polish).
  • [106] J. Marczak and A. Kos, “Physics in modern investigations and conservation of works of art”, Conservation News 26, 65-76 (2009).
  • [107] J. Marczak, “Surface cleaning of art work by UV, VIS and IR pulse laser radiation”, Proc. SPIE, Laser Techniques andSystems in Art Conservations 4402, 202-209 (2001).
  • [108] J. Marczak, K. Jach, and R. Swierczynski, “Numerical modeling of laser-matter interaction in the region of “low” laser parameters”, Applied Physics A 3, 725-731 (2010).
  • [109] T. Burakowski, J. Marczak, and W. Napadlek, “The point for cleaning of materials using laser ablation”, Institute of ElectronicsWorks 228, 125-134 (2006), (in Polish).
  • [110] A.C. Tam, W.P. Leung, W. Zapka, and W. Ziemlich, “Laser cleaning techniques for removal of surface particulates”, J. Appl. Phys. 71 (7), 3515-3523 (1992).
  • [111] J. Marczak, A. Koss, P. Targowski, M. Gora, M. Strzelec, A. Sarzynski, W. Skrzeczanowski, R. Ostrowski, and A. Rycyk, “Characterization of laser cleaning of artworks”, Sensors 8, 6507-6548 (2008).
  • [112] R. Major, K. Maksymow, J. Marczak, J.M. Lackner, M. Kot, and B. Major, “Migration channels produced by laser ablation for substrate endotelialization”, Bull. Pol. Ac.: Tech. 60, 337-342 (2012).
  • [113] C. Tam, H.K. Park and C.P. Grigoropoulos, “Laser cleaning of surface contaminants”, Applied Surface Science 127-129, 721-725 (1998).
  • [114] D. B¨auerle, Laser Processing and Chemistry, Springer, Berlin, 2000.
  • [115] A. Kaminska, M. Sawczak, K. Komar, and G. Sliwinski, “Application of the laser ablation for conservation of historical paper documentas”, Applied Surface Science 253 (19), 7860-7864 (2007).
  • [116] A.A. Bugayev, M.C. Gupta, and R. Payne, “Laser processing of Inconel 600 and surface structure”, Optics and Lasers inEngineering 44, 102-111 (2006).
  • [117] J. Marczak, “Surface cleaning of art works by UV, VIS and pulsed laser radiation”, Proc. SPIE, Laser Techniques andSystems in Art Conservations 4402, 202-209 (2001).
  • [118] J. Marczak, W. Napadlek, and A. Sarzynski, “Modification of aluminum surface layer properties by detonation wave generated by laser beam”, Materials Engineering 5 (147), 622-624 (2005), (in Polish).
  • [119] C. Ye and G.J. Cheng, “Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160”, Advanced Engineering Materials 12 (4), 291-297 (2010).
  • [120] Y.K. Zhang, J.Z. Lu, X.D. Ren, H.B. Yao, and H.X.Yao, “Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy”, Materials and Design 30 (5), 1697-1703 (2009).
  • [121] M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani, and M.A. Meyers, “Laser shock compression of copper and copper-aluminum alloys”, Int. J. ImpactEngineering 32, 473-507 (2005).
  • [122] M. Rozmus-Gornikowska, J. Kusinski, and M. Blicharski, “Laser shock processing of an austenitic stainless steel”, Archives of Metallurgy 55 (3), 635-639 (2010).
  • [123] Q. Liu, C.H. Yang, K. Ding, S.A. Barter, and L. Ye, “The effect of laser power density on the fatigue life of laser-shockpeened 7050 aluminium alloys”, Fatique and Fracture of EngineeringMaterial and Structures 30, 1110-1124 (2007).
  • [124] M. Rozmus-Gornikowska, “Surface modifications of a Ti6Al4V Alloys by a laser shock processing”, Acta PhysicaPolonica A 117 (5), 808-811 (2010).
  • [125] P. Peyre, C. Carboni, P. Forget, and G. Beranger, “Influence of thermal and mechanical surface modifications induced by laser peening on the initiation of corrosion pits in 316L stainless steel”, J. Material Science 42 (16), 6866-6877 (2007).
  • [126] M. Rozmus-Gornikowska, J. Kusinski, and M. Blicharski, “The influence of the laser treatment on microstructure of the surface layer of an (X5CrNi18-10) austenitic stainless steel”, Archives of Metallurgy 56 (3), 717-721 (2011).
  • [127] L. Major, A. Rycyk, J. Kusinski, and J. Marczak, “Formation of intermetallic layers by means of pulsed laser radiation”, Materials Engineering 32 (4), 549-552 (2011).
  • [128] T. Burakowski, W. Napadłek, and A. Wozniak, “Ablative laser texturing of the crankshaft pin of internal combustion engine”, J. Machine Engineering 16 (4), 92-100 (2011), (in Polish).
  • [129] T. Burakowski, W. Napadłek, A. Wozniak, and I. Kalman, “Experimental determination of the effect of density of power laser _ = 1064 nm on the effectiveness of laser steel one pulse texturing 41Cr4”, Proc. Electrotechnical Institute 256, 7-21 (2012), (in Polish).
  • [130] L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells”, J. Achievements in Materialsand Manufacturing Engineering 31 (1), 77-82 (2008).
  • [131] B. Antoszewski, “Formation of sliding surface with texture by laser micromachining”, Electrical Review 87 (7), 6-8 (2011).
  • [132] D. Du, Y.F. He, B. Sui, L.J. Xiong, and H. Zhang, “Laser texturing of rollers by pulsed Nd:YAG laser”, J. MaterialsProcessing Technology 161, 456-461 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.