Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the more developed countries the use of modern technologies in the national economy is a general process allowing joint funding of a security research and development by both sources, state and private. The last one is especially involved in applications of modern technologies. One of the examples of important modern technologies being under development in many countries are dual-use technologies, which include IT technologies, sensors, effective energy sources, material science, nanotechnology, micro- and nano-electronics, photonics, biotechnology and quantum medicine. In this paper chosen technologies fulfilling the needs of the military technique and security monitoring systems, which have found their applications in the different branches of industry like power engineering, transportation, construction industry, metrology, protection of environment and the medicine, are discussed. The examples include the devices and lasers systems for different threats monitoring, which have been developed at the Military University of Technology. The research studies carried out on the analysis of various materials based on their spectroscopic characteristics: absorption, emission, dispersion, polarization and fluorescence in different mediums have led to the development of laser telemetry devices, environment monitoring devices and spatial imagery, as well as devices for medical diagnostics and therapy. Mentioned systems are composed of functional modules, which were developed to meet the real needs. These systems can be expanded further by addition of extra detectors of chemical materials and physical properties, and improving measuring functions and data transmission and processing.
Słowa kluczowe
Rocznik
Tom
Strony
691--696
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
- [1] Jane’s Defence Equipment and Technology Solutions, Jane’s Defence Data, 2011.
- [2] W. Żendzian, J. Jabczyński, P. Wachulak, and J. Kwiatkowski, “High repetition rate, intracavity-pumped KTP OPO at 1572 nm”, Appl. Phys. B 80, 329-332 (2005).
- [3] J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength”, Optica Applicata 38 (4), 657-668 (2008).
- [4] J. Młyńczak, K. Kopczyński, and Z. Mierczyk, “Wavelength tuning in Er3+, Yb3+:glass microchip lasers”, Opto-Electron. Rev. 17 (1), 87-91 (2009).
- [5] J. Młyńczak, K. Kopczyński, Z. Mierczyk, M. Malinowska, and P. Osiwiański, “Comparison of cw laser generation in Er3+, Yb3+: glass microchip lasers with different types of glasses”, Opto-Electron. Rev. 19 (4), 87-91 (2011).
- [6] A. Bajor, J. Kisielewski, K. Kopczyński, T. Łukasiewicz, J. Mierczyk, Z. Mierczyk, J. Młyńczak, D. Pawlak, and M. Świrkowicz, “Investigation of nonlinear absorption YAP and YAG single crystals doped with Co and co-doped with Si”, Opto-Electron. Rev. 17 (2), 10-15 (2009).
- [7] P.W.Wachulak, A. Bartnik, H. Fiedorowicz, T. Feigl, R. Jarocki, J. Kostecki, R. Rakowski, P. Rudawski, M. Sawicka, M. Szczurek, A. Szczurek, and Z. Zawadzki, “A compact, quasimonochromatic laser-plasma EUV source based on a double stream gas puff target at 13.8 nm wavelength”, Appl. Phys. B 100, 461-469 (2010).
- [8] J. Marczak, K. Jach, and R. Świerczyński, “Numerical modeling of laser-matter interaction in the region of “low” laser parameters”, Appl. Phys. A 3, 725-731 (2010).
- [9] M. Kastek, R. Dulski, P. Trzaskawka, and G. Bieszczad, “Measurement of sniper infrared signatures”, SPIE Security and Defense 7481, CD-ROM (2010).
- [10] K. Kopczyński, M. Kwaśny, Z. Mierczyk, and Z. Zawadzki, “Laser induced fluorescence system for detection of biological agents: European project FABIOLA”, Proc. SPIE 5954, 1-12 (2005).
- [11] M. Wlodarski, M. Kaliszewski, M. Kwasny, K. Kopczynski, Z. Zawadzki, Z. Mierczyk, and J. Mlynczak, “Fluorescence excitation-emission matrices of selected biological materials”, Proc. SPIE Optically Based Biological and Chemical Detectionfor Defence III 6398, CD-ROM (2006).
- [12] M. Kaliszewski, M. Wlodarski, J. Mlynczak, M. Kwasny, Z. Zawadzki, Z. Mierczyk, and K. Kopczynski, “Improved laser-induced fluorescence method for bio-attack early warning detection system”, Proc. of SPIE, Optically Based Biologicaland Chemical Detection for Defence IV 7116, 0C1-0C11 (2008).
- [13] M. Kwaśny, Z. Mierczyk, A. Gietka, A. Graczyk, and J. Domaniecki, “Investigation on localization of porphyrin amini acids derivatives in superficial tumors using laser induced fluorescence”, Proc. SPIE 3188, 48-56 (1997).
- [14] M. Kwaśny and Z. Mierczyk, “Laser fluorescence spectrometers for medical diagnosis”, Proc. SPIE 4238, 69-79 (2000).
- [15] A. Ulatowska-Jarża, J. Pucińska, K. Wysocka-Krol, I. Hołowacz, and H. Podbielska, “Nanotechnology for biomedical applications - enhancement of photodynamic activity by nanomaterials”, Bull. Pol. Ac.: Tech. 59 (3), 253-261 (2011).
- [16] Z. Mierczyk, “Laser systems for stand-off detection of contamination and pollution of atmosphere”, Proc. SPIE Laser TechnologyVIII: Applications of Lasers 6598, 112-120 (2007).
- [17] V.A. Kovalev and W.E. Eichinger, Elastic Lidar. Theory, Practiceand Analysis Methods, Wiley J. Interscience Publication, London, 2004.
- [18] R. Harig and G. Matz, “Toxic cloud imaging by infrared spectrometry: a scanning FTIR system for identification and visualization”, Field Analytical Chem. and Technology 5 (1-2), 75-90 (2001).
- [19] F. Opitz, Sensor Suites and Information Fusion in SecurityApplications, Sensor and Technology for Defence Against Terrorism, RTO SET Panel, 2008.
- [20] J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with cavity enhanced spectroscopy”, Optica Applicata, 36, 461-467 (2006).
- [21] J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, Applying CEAS method to UV, VIS, and IR spectroscopy sensors, Bull. Pol. Ac.: Tech. 59 (4), 415-418 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0031