PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photonic integrated circuits - a new approach to laser technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is focused on InP-based photonic integrated circuits, with a short description of the potential of the silicon technology. A completely new way of fabrication of PICs, called generic integration technology, is presented and discussed. The basic assumption of this approach is the very same as in the case of electronic circuits and states that a limited set of standard components, both active and passive, enables designing of a complex, multifunctional PIC of every type. As a result, functionally advanced, compact, energy efficient and cost-optimized photonic devices can be fabricated. The work presents also selected examples of active PICs like multiwavelength laser sources, discretely tunable lasers, WDM transmitters, ring lasers etc.
Rocznik
Strony
683--689
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
autor
autor
  • Institute of Microelectronics and Optoelectronics, 75 Koszykowa St., 00-662 Warszawa, Poland
Bibliografia
  • [1] R. Braunstein, “Radiative transitions in semiconductors”, PhysicalReview 99 (6), 1892-1893 (1955).
  • [2] Z.I. Alferov, V.M. Andreev, D. Garbuzov, and Y.V. Zhilyaev, “Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and realizaton of continuous emission at room temperature”, Sov. Phys.Semiconductor 4 (9), 1573-1575 (1971).
  • [3] J.W. Crowe and R.M. Craig Jr., “Small-signal amplification in GaAs lasers”, Appl. Phys. Lett. 4, 57-58 (1964).
  • [4] G. de Valicourt, D. Mak´e, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11 dBm) RSOA devices as colorless ONU sources in long-reach hybrid WDM/TDM-PON architecture”, IEEE Photonics Technology Letters 22 (3), 191-193 (2010).
  • [5] The Silicon-photonics platform ePIXfab, www.epixfab.eu.
  • [6] A. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser”, Optics Express 14 (20), 9203-9210 (2006).
  • [7] Intel Labs website, www.intel.com/go/sp.
  • [8] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser”, Nature 433, 725-728 (2005).
  • [9] G. Keiser, Optical Fiber Communications, McGraw-Hill, New York, 2000.
  • [10] M.K. Smit, “New focusing and dispersive planar component based on an optical phased array”, Electronics Letters 24 (7), 385-386 (1988).
  • [11] K. Lawniczuk, R. Piramidowicz, P. Szczepanski, P.J.Williams, M.J. Wale, M.K. Smit, and X.J.M. Leijtens, “8-channel AWGbased multiwavelength laser fabricated in a multi-project wafer run”, Proc. 23rd Int. Conf. on Indium Phosphide and RelatedMaterials 1, CD-ROM (2011).
  • [12] J.H. den Besten, “Integration of multiwavelength lasers with fast electro-optical modulators”, PhD Thesis, Eindhoven University of Technology, Eindhoven, 2004.
  • [13] K. Ławniczuk, M.K. Smit, X.J.M. Leijtens, M.J. Wale, R. Piramidowicz, and P. Szczepański, “Photonic integrated multiwavelength transmitters for Fiber-To-The-Home networks”, Proc. 16th Eur. Conf. on Integrated Optics and Technical Exhibition 1, CD-ROM (2012).
  • [14] R. Nagarajan, “Large-scale photonic integrated circuits”, IEEEJ. Selected Topics in Quantum Electronics 11 (1), 50-65 (2005).
  • [15] J. Zhao, K. Dijkstra, M.J. Wale, P. Maat, M.K. Smit, and X.J.M. Leijtens, “Monolithically integrated filtered-feedback multi-wavelength laser with Mach-Zehnder modulators”, Proc.16th Eur. Conf. on Integrated Optics and Technical Exhibition 1, CD-ROM (2012).
  • [16] X. Guo, “Monolithically integrated variable repetition rate mode-locked laser diode”, Proc. 16th Eur. Conf. on IntegratedOptics and Technical Exhibition 1, CD-ROM (2012).
  • [17] B.W. Tilma, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region”, IEEE J.Quantum Electronics 48 (2), 87-98 (2012).
  • [18] R.G. Broeke, J.J.M Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, J.H.C. van Zantvoort, X.J.M. Leijtens, Y.S. Oei, and M.K. Smit, “An all-optical wavelength converter with a monolithically integrated digitally tunable laser”, Proc. 28th Eur. Conf. on Optical Communication 1, CD-ROM (2002).
  • [19] E. Pennings, “III-V integration roadmap”, MIT RoadmappingConf. 1, CD-ROM (2004).
  • [20] S. Stopiński, M. Malinowski, R. Piramidowicz, M.K. Smit, and X.J.M. Leijtens, “Integrated optical serializer designed and fabricated in a generic InP-based technology”, Proc.16th Eur. Conf. on Integrated Optics and Technical Exhibition 1, CDROM (2012).
  • [21] M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Genericfoundry model for InP-based photonics”, IET Optoelectronics 5 (5), 187-194 (2011).
  • [22] X. Leijtens, “JePPIX: the platform for InP-based photonics”, IET Optoelectronics 5 (5), 202-206 (2011).
  • [23] JePPIX technology platform, www.jeppix.eu.
  • [24] L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications”, J. Ligthwave Technology 13 (4), 615-627 (1995).
  • [25] M.T. Hill, X.J.M. Leijtens, G.D. Khoe, and M.K. Smit, “Optimizing imbalance and loss in 2×2 3-dB multimode interference couplers via access waveguide width”, J. LightwaveTechnology 21 (10), 2305-2313 (2003).
  • [26] M. Bachmann, P.A. Besse, and H. Melchior, “Overlappingimage multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting”, Applied Optics 34 (30), 6898-6910 (1995).
  • [27] E. Kleijn, T. de Vries, H.P.M.M. Ambrosius, M.K. Smit, and X.J.M. Leijtens, Proc. 15th Annual Symposium of the IEEEPhotonics Benelux Chapter 1, CD-ROM (2010).
  • [28] M.K. Smit, “Progress in AWG design and technology”, Proc.4th IEEE/LEOS Workshop on Fibres and Optical Passive Components 1, CD-ROM (2005).
  • [29] M.J.R. Heck, A. La Porta, X.J.M. Leijtens, L.M. Augustin, T. de Vries, E. Smalbrugge, Y.S. Oei, R. N¨otzel, R. Gaudino, D.J. Robbins, and M.K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed”, IEEE Photonics Technology Letters 21 (13), 905-907 (2009).
  • [30] C.R. Doerr, C.H. Joyner, and L.W. Stulz, “40-Wavelength rapidly digitally tunable laser”, IEEE Photonics TechnologyLetters 11 (11), 1348-1350 (1999).
  • [31] European FP7 project EuroPIC, www.europic.jeppix.eu.
  • [32] European FP7 project PARADIGM, www.paradigm.jeppix.eu.
  • [33] K. Golaszewska, E. Kaminska, T. Pustelny, P. Struk, T. Piotrowski, A. Piotrowska, M. Ekielski, R. Kruszka, M. Wzorek, M. Borysewicz, I. Pasternak, and K. Gut, “Planar optical waveguides for optoelectronic gas sensors”, Acta PhysicaPolonica A 114 (6-A), 221-228 (2008).
  • [34] P. Struk and T. Pustelny, “Design and numerical analyses of the planar grating coupler”, Bull. Pol. Ac.: Tech. 58 (4), 509-512 (2010).
  • [35] The MOSIS service, www.MOSIS.org.
  • [36] Europractice, www.Europractice.org.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.