PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active optical fibres for application in laser and broadband ASE sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article brings into focus the present state of technology employing active fibres doped with rare earth (RE) ions for applications requiring power supply of several dozen watts and broadband ASE sources. Current trends in development of glasses and in construction of active fibres used in fibre sources of radiation within VIS-NIR range are presented. Technological constraints in the doping of fibre core glasses are discussed, with particular consideration of optimal RE concentration for technical applications. Characteristics of glasses are offered, and the glasses are used for manufacturing optical fibres with luminescence within the visible as well as near- and mid-infrared ranges. Also, requirements and luminescence properties concerning glasses co-doped with e.g. Nd3+/Yb3+,Tm3+/Ho3+ and Yb3+/Tb3+ are discussed. Results of research on the impact of technological parameters of glass matrices on luminescence properties of core glasses and optical fibres are quoted. For the doped glasses of which luminescence in a wide spectral range is desired, conditions for their processing into optical fibre systems are mentioned. Additionally, the impact of phonon energy in the glass on producing emission in a specified spectral range is analyzed. Furthermore, the article presents directions of technological studies to solve problems persisting in the phase of glass matrix design, as well as in determining the influence of fibre drawing process on the luminescence properties of core glasses and optical fibres, confirming the differences in luminescence stemming from the drawing process. Finally, some original designs of core glasses and active multicore fibre systems devised for construction of fibre radiation sources are presented.
Rocznik
Strony
673--682
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Białystok, Poland
Bibliografia
  • [1] C.J. Mackechnie, W.L. Barnes, D.C. Hanna, and J.E. Townsend, “High power ytterbium doped fiber laser operating in the 1.12 μm region”, Elect. Let. 29, 52-53 (1993).
  • [2] Y. Jeong, J.K. Sahu, D.N. Payne, and J. Nilsson, “Ytterbiumdoped large-core fibre laser with 1.36kW continuous wave output power”, Opt. Express 12, 6088-6092 (2004).
  • [3] A. Zając, D. Dorosz, M. Kochanowicz, M. Skorczakowski, and J. Świderski, “Fibre lasers - conditioning constructional and technological”, Bull. Pol. Ac.: Tech. 58, 491-502 (2010).
  • [4] http://www.ipgphotonics.com/apps mat multi YLR.htm.
  • [5] P.C. Becker, N.A. Olson, and J.R. Simpson, Erbium - dopedFibre Amplifiers: Fundamentals and Technology, Academic Press, Boston, 1999.
  • [6] J.J. Neto, T. Santos Moura, F. Silva, S.L. Baldochi, and N.U. Wetter, “Lasing of a single crystal Nd3+ fluoride fibre”, Opt. Comm. 283, 3487-3491 (2010).
  • [7] S.D. Jackson, “Cross relaxation and energy transfer upconversion cesses relevant to the functioning of 2 μm Tm3+ - doped silica fibre lasers”, Opt. Comm. 230, 197-203 (2004).
  • [8] D. Dorosz, “Special active optical fibres”, Ceramics 110, CDROM (2010).
  • [9] Y. Sintov, Y. Glick, T. Koplowitch, and Y. Napcha, “Extractable energy from erbium-ytterbium co-doped pulsem fiber amplifiers and lasers”, Opt. Comm. 281, 1162-1178 (2008).
  • [10] E. Yahel and A. Hardy, “Efficiency optimization of high power, Er3+-Yb3+ codoped fibre amplifiers for wavelength-divisionmultiplexing applications”, J. Opt. Soc. Am. B 20, 1189-1197 (2003).
  • [11] I. Trifanov, P. Caldas, L. Neagu, R. Romero, M.O. Berendt, J.A.R. Salcedo, A.Gh. Podoleanu, and A.B. Lobo Ribeiro, “Combined neodymium-ytterbium-doped ASE fibreoptic source for optical coherence tomography applications”, IEEE Photonics Technology Letters 23, 21-23 (2011).
  • [12] Y. Sintov, O. Katz, Y. Glick, S Acco, Y. Nafcha, A. Englander, and R. Lavi, “Extractable energy from ytterbium-doped high energy pulsed fibre amplifiers and lasers”, J. Opt. Soc. Am. B 23, 218-230 (2006).
  • [13] S. Jiang, J. Wu, and J. Geng, “2 μm fibre amplified spontaneous emission (ASE) source”, Patent US 7298547 B1 (2007).
  • [14] J. Limpert, A. Liem, S. Hofer, H. Zellmer, and A. Tunnermann, “150 W Nd/Yb codoped fibre laser at 1.1 μm”, Opticsand Photonics 73, 590-591 (2002).
  • [15] V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicnese, R. Dohle, E. Wolak, P.S. Yeh, and E. Zucker, “150 W Fibre laser”, CLEOE Conf. 1, CD-ROM (2004).
  • [16] D. Dorosz, J. Żmojda, M. Kochanowicz, and J. Dorosz “Analysis of Nd3+/Yb3+ ions energy transfer in oxyfluoride silicate glass for optical fibre ASE source”, Proc. ECERS 1, 775-778 (2009).
  • [17] P. Nandi and G. Jose, “Superfluorescence from Yb- and Yb- Er-doped phosphotellurite glass fibres”, Opt. Fibre Technology 14 (4), 275-280 (2008).
  • [18] D. Dorosz, J. Żmojda, M. Kochanowicz, and J. Dorosz, “Nd3+/Yb3+ Doped phosphate and antimony glasses for optical fibre source”, Acta Phys. Pol. A 118, 1108-1112 (2010).
  • [19] Y. Qiao, N. Da, D. Chen, W. Ma, Q. Zhou, and J. Qiu. “Spectroscopic properties of Nd3+,Yb3+-doped and Nd3+-Yb3+- codoped high silica glass”, J Mater Sci. 44, 4026-4030 (2009).
  • [20] D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres”, Bull. Pol. Ac.: Tech. 56 (2), 103-111 (2008).
  • [21] D.E. McCumber, “Einstein relations connecting broadband emission and absorption spectra”, Physics. Review 136, A954- A957 (1964).
  • [22] T. F¨orster, “Zwischenmolekulare Energiewanderung und Fluoreszenz”, Ann. Physik 6 (2), 55 (1948).
  • [23] D.L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys. 21, 836 (1953).
  • [24] D. Dorosz, M. Kochanowicz, J. Żmojda, and J. Dorosz, “New construction of active optical fibres for fibre laser application”, Cer. Mat. 62, 74-80 (2010).
  • [25] M. Kochanowicz, D. Dorosz, and A. Zając, “Phase-locking of 19-core Yb3+-doped optical fibre”, Bull. Pol. Ac.: Tech. 59 (4), 371-379 (2011).
  • [26] B.M. Walsch, “Review of Tm and Ho materials; spectroscopy and lasers”, Laser Physics 19, 855-866 (2009).
  • [27] S.D. Jackson, “Midinfrared holmium fibre lasers”, IEEE J. Quant Electr. 42 (2), CD-ROM (2006).
  • [28] G.X. Chen, Q.Y. Hang, G.F. Yang, and Z.H. Jiang, “Midinfrared emission characteristic and energy transfer of Ho3+- doped tellurite glass sensitized by Tm3+”, J. Fluor. 17, 301-307 (2007).
  • [29] Q. Qian, C. Zhao, G.F. Yang, Z.M. Yang, Q.Y. Hang, and Z.H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped antimony-borosilicate glasses”, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy 71, 280-285 (2008).
  • [30] J. Żmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Spectroscopic properties of Yb3+/Er3+-doped antimony-phosphate glasses” Proc. SPIE 7745, CD-ROM (2010).
  • [31] J. Minelly and A. Ellison, “Applications of antimony - silicate glasses for fiber optic amplifiers”, Optical Fibre Technology 8, 123-138 (2002).
  • [32] J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre”, Bull. Pol. Ac.: Tech. 59 (4), 381-387 (2011).
  • [33] S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication”, C. R. Chimie 5, 815-824 (2002).
  • [34] K. Barczak, “Optical fibre current sensor for electrical power engineering” Bull. Pol. Ac.: Tech. 59 (4), 409-414 (2011).
  • [35] J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki “Applying CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac.: Tech. 59 (4), 415-418 (2011).
  • [36] B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3, Tm3+ - Ho3+ and Tm3+ - Yb3+-doped tellurite fibre”, Opt. Exp. 15, 6546 (2007).
  • [37] R. Scheps, “Upconversion laser processes”, Prog in QuantElectr. 20, 271-358 (1996).
  • [38] L. Feng, Q. Tang, L. Liang, J.Wang, H. Liang, and Q. Su, “Optical transitions and up-conversion emission of Tm3+−singly doped and Tm3+/Yb3+−codoped oxyfiuoride glasses”, J. Alloyand Compound 436, 272-277 (2007).
  • [39] Q. Nie, X. Li, S. Dai, et al., Energy transfer and upconversion luminescence in Tm3+/Yb3+ co-doped lanthanum-zinctellurite glasses, J. Lumin. 128, 135-141 (2008).
  • [40] J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fibre devices”, Opt. Mater. 3, 187 (1994).
  • [41] Q.Y. Zhang, Z.M. Feng, Z.M. Yang, and Z.H. Jiang, “Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses”, J. Quant Spectr Radiat Transfer 98, 167-179 (2006).
  • [42] X. Li, Q. Nie, S. Dai, T. Xua, X. Shena, and X. Zhang, “Investigation of energy transfer and frequency upconversionin Ho3+/Yb3+ co-doped tellurite glasses”, J. Phys Chem. Solid 68, 1566-1570 (2007).
  • [43] E.F. Chillcce, I.O. Mazali, O.L. Alves, and L.C. Barbosa, “Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses”, Opt. Mater 33, 389-396 (2011).
  • [44] A.S. Gouveia-Neto, L.A. Bueno, A.C.M. Afonso, J.F. Nascimento, E.B. Costa, Y. Messaddeq, and S.J.L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+− and Tb3+/Yb3+- codoped fiuorogermanate glass and glass ceramic”, J. Non-Cryst. Solid 354, 509-514 (2008).
  • [45] N.K. Giri, D.K. Rai, and S.B. Rai, “UV - visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation”, Appl. Phys. B 89, 345-348 (2007).
  • [46] T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass”, J. Non-Cryst. Solid 354, 1883-1890 (2008).
  • [47] V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+ - Tb3+ and Yb3+ - Tm3+ - Tb3+ doped fluoro-germanate bulk glass and fibre”, Opt. Mater. 33, 159 (2010).
  • [48] L. Feng, J. Zhang, J. Wang, H. Liang, and Q. Su, “Cooperative energy transfer frequency upconversion in Tb3+/Yb3+- codoped oxyfluoride glasses”, Spectrochimica Acta Part A 67, 886-889 (2007). 682
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.