PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive stable realizations of discrete-time linear systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of existence and determination of the set of positive asymptotically stable realizations of a proper transfer function of linear discrete-time systems is formulated and solved. Necessary and sufficient conditions for existence of the set of the realizations are established. A procedure for computation of the set of realizations are proposed and illustrated by numerical examples.
Słowa kluczowe
Rocznik
Strony
605--616
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok, Poland
Bibliografia
  • [1] L. Farina and S. Rinaldi, Positive Linear Systems. Theory andApplications, J. Wiley, New York, 2000.
  • [2] L. Benvenuti and L. Farina, “A tutorial on the positive realization problem”, IEEE Trans. Autom. Control 49 (5), 651-664 (2004).
  • [3] T. Kaczorek, Linear Control Systems, vol. 1, Research Studies Press and J. Wiley, New York, 1992.
  • [4] T. Kaczorek, Polynomial and Rational Matrices, Springer- Verlag, London, 2009.
  • [5] T. Kaczorek, Selected Problems in Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
  • [6] T. Kaczorek, “Existence and determination of the set of Metzler matrices for given stable polynomials”, Int. J. Appl. Comput.Sci. 22 (2), 389-399 (2012).
  • [7] T. Kaczorek, “Positive stable realizations for fractional descriptor continuous-time linear systems”, Archives of Control Sciences 22 (4), (2012), (to be published).
  • [8] U. Shaker and M. Dixon, “Generalized minimal realization of transfer-function matrices”, Int. J. Contr. 25 (5), 785-803 (1977).
  • [9] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
  • [10] T. Kaczorek, “A realization problem for positive continuoustime linear systems with reduced numbers of delays”, Int. J.Appl. Math. Comp. Sci. 16 (3), 325-331 (2006).
  • [11] T. Kaczorek, “Computation of realizations of discrete-time cone systems”, Bull. Pol. Ac.: Tech. 54 (3), 347-350 (2006).
  • [12] T. Kaczorek, “Computation of positive stable realizations for linear continuous-time systems”, Bull. Pol. Acad. Sci. Techn. 59 (3), 273-281 (2011).
  • [13] T. Kaczorek, “Positive stable realizations of fractional continuous-time linear systems”, Int. J. Appl. Math. Comp. Sci. 21 (4), 697-702 (2011).
  • [14] T. Kaczorek, “Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs”, Int. J. Appl. Math. Comp. Sci. 16 (2), 101-106 (2006).
  • [15] T. Kaczorek, “Realization problem for positive discrete-time systems with delay”, System Science 30 (4), 117-130 (2004).
  • [16] T. Kaczorek, “Positive stable realizations with system Metzler matrices”, Archives of Control Sciences 21 (2), 167-188 (2011).
  • [17] T. Kaczorek, “Positive minimal realizations for singular discrete-time systems with delays in state and delays in control”, Bull. Pol. Ac.: Tech. 53 (3), 293-298 (2005).
  • [18] T. Kaczorek, “Fractional positive continuous-time linear systems and their reachability”, Int. J. Appl. Math. Comput. Sci. 18 (2), 223-228 (2008).
  • [19] T. Kaczorek, “Fractional positive linear systems” Kybernetes:Int. J. Systems & Cybernetics 38 (7/8), 1059-1078 (2009).
  • [20] T. Kaczorek, “Realization problem for fractional continuoustime systems”, Archives of Control Sciences 18 (1), 43-58 (2008).
  • [21] T. Kaczorek, “Positive fractional 2D continuous-discrete linear systems”, Bull. Pol. Ac.: Tech. 59 (4), 575-580 (2011).
  • [22] T. Kaczorek, “Stability of continuous-discrete linear systems described by the general model”, Bull. Pol. Ac.: Tech. 59 (2), 189-193 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.