Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is focused on the convergence problem defined for some class of a two input affine nonholonomic driftless system with three-dimensional state. The problem is solved based on a polar transformation which is singular at the origin. The convergence is ensured using static-state feedback. The necessary conditions for construction of the algorithm are formally discussed. The solution, in general, is local, and the feasible domain is strictly related to the properties of the control system. In order to improve algorithm robustness a simple hybrid algorithm is formulated. The general theory is illustrated by two particular systems and the results of numerical simulations are provided.
Rocznik
Tom
Strony
521--535
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
autor
autor
- Poznań University of Technology, Chair of Control and Systems Engineering, 3a Piotrowo St., 60-965 Poznań, Poland
Bibliografia
- [1] R.W. Brockett, Asymptotic stability and feedback stabilization, In Differential Geometric Control Theory, eds. R.W. Brockett, R.S. Millman, and H.J. Sussmann, pp. 181-191, Birkh¨auser, Boston, 1983.
- [2] C. Samson, “Velocity and torque feedback control of a nonholonomic cart”, Advanced Robot Control, eds. C. Canudas de Witpages, pp. 125-151, Birkhauser, Boston, 1991.
- [3] J.B. Pomet, “Explicit design of time varying stabilization control laws for a class of controllable systems without drifts”, Systems and Control Letters 48, 147-158 (1992).
- [4] C. Canudas de Wit and O.J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints”, IEEETrans. Automatic Control 37, 1791-1797 (1992).
- [5] A. Astolfi, “Exponential stabilization of a wheeled mobile robot via discontinuous control”, Nonlinear Control System DesignSymposium 1, 741-746 (1995).
- [6] R.T. M’Closkey and R.M. Murray, “Exponential stabilization of driftless nonlinear control systems using homogeneous feedback”, IEEE Trans. on Automatic Control 42, 614-628 (1995).
- [7] P. Morin and C. Samson, “Trajectory tracking for nonholonomic vehicles: overview and case study”, Proc. 4th Int.Workshop on Robot Motion and Control 1, 139-153 (2004).
- [8] D.A. Lizárraga, P. Morin, and C. Samson, “Non-robustness of continuous homogeneous stabilizers for affine control systems”, Proc. of Conf. on Decision and Control 1, 855-860 (1999).
- [9] P. Morin and C. Samson, “Practical stabilization of driftless systems on Lie groups: the transverse function approach”, IEEE Trans. on Automatic Control 48 (9), 1496-1508 (2003).
- [10] I. Dulęba, “Impact of control representations on efficiency of local nonholonomic motion planning”, Bull. Pol. Ac.: Tech. 59 (2), 213-218 (2011).
- [11] G. Lafferriere and H.J. Sussmann, “A differential geometric approach to motion planning”, in Nonholonomic Motion Planning, pp. 235-270, Kluwer, London, 1993.
- [12] R. Murray and S.S. Sastry, “Nonholonomic motion planning: Steering using sinusoids”, IEEE Trans. on Automatic Control 38, 700-716 (1993).
- [13] M. Fliess, J.L. L´evine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems: introductory theory and examples”, Int. J. Control 61 (6), 1327-1361 (1995).
- [14] I. Dulęba and J.Z. Sąsiadek, “Nonholonomic motion planning based on Newton algorithm with energy optimization”, IEEETrans. on Control Systems Technology 11 (3), 355-363 (2003).
- [15] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop steering of unicycle-like vehicles via Lyapunov techniques”, IEEE Robotics and Automation Magazine 2, 27-35 (1995).
- [16] G. Oriolo, A. De Luca, and M. Venditteli, “WMR control via dynamic feedback linearization: design, implementation and experimental validation”, IEEE Trans. on Control System Technology 1, 835-852 (2002).
- [17] D. Pazderski, K. Kozłowski, and K. Krysiak, “Nonsmooth stabilizer for three link nonholonomic manipulator using polarlike coordinate representation”, in Robot Motion and Control, vol. 396, pp. 35-44, Springer-Verlag, Berlin, 2009.
- [18] D. Pazderski, K. Kozłowski, and J.K. Tar, “Discontinuous stabilizer of the first order chained system using polar-like coordinates transformation”, Proc. Eur. Control Conf. 1, 2751-2756 (2009).
- [19] J.-J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New York, 1990.
- [20] D. Pazderski, B. Krysiak, and K. Kozłowski, “A comparison study of discontinuous control algorithms for three-link nonholonomic manipulator”, in Robot Motion and Control, vol. 422, pp. 377-389, Springer-Verlag, Berlin, 2012.
- [21] J.P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholonomic motion planning for mobile robots”, in RobotMotion Planning and Control, vol. 229, pp. 1-54, Springer- Verlag, Berlin, 1998.
- [22] D. Pazderski, P. Szulczyński, and K. Kozłowski, “Kinematic tracking controller for unicycle mobile robbot based on polar-like representation and Lyapunov analysis”, in Robot Motionand Control, vol. 396, pp. 45-56, Springer-Verlag, Berlin, 2009.
- [23] M. Michałek and K. Kozłowski, “Vector-field-orientation feedback control method for a differentially driven vehicle”, IEEETrans. on Control Systems Technology 18 (1), 45-65 (2010).
- [24] M. Aicardi, G. Cannata, G. Casalino, and G. Indiveri, “Guidance of 3D underwater non-holonomic vehicle via projection on holonomic solutions”, 8th Int. Symp. on Robotics with Applications 1, CD-ROM (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0015