PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active Disturbance Rejection Control of a 2DOF manipulator with significant modeling uncertainty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a practical verification of an Active Disturbance Rejection Control (ADRC) method in governing a multidimensional system. The experiments were conducted on a two degrees of a freedom planar manipulator with only partial knowledge about the mathematical model of the plant. This multi input multi output system was controlled with a set of two, independent, single input single output ADRC controllers, each regulating one of the manipulator degree of freedom. Modeling uncertainty (nonlinearities, cross-coupling effects, etc.) and external disturbances were assumed to be a part of the disturbance, to be estimated with an observer and cancelled on-line in the control loop. The ADRC robustness was experimentally compared with the results obtained from using two decentralized, classic PID controllers. Both control methods were tested under various conditions, e.g. changing the inertial parameters of the plant. Significantly better results, in terms of parametric robustness, have been reported for the ADRC approach.
Rocznik
Strony
509--520
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
  • Chair of Control and Systems Engineering, Faculty of Computing Science, Poznań University of Technology, 3a Piotrowo St., 61-138 Poznań, Poland
Bibliografia
  • [1] W.S. Levine, The Control Handbook, CRC Press Book, London, 1999.
  • [2] A. Radke and Z. Gao, “A survey of state and disturbance observers for practitioners”, American Control Conf. 1, 5183- 5188 (2006).
  • [3] E. Schrijver and J. van Dijk, “Disturbance observers for rigid mechanical systems: equivalence, stability, and design”, J. DynamicsSystems, Measurement, and Control 124 (4), 539-548 (2002).
  • [4] J.A. Profeta, W.G. Vogt, and M.H. Mickle, “Disturbance estimation and compensation in linear systems”, IEEE Trans. onAerospace and Electronic Systems 26 (2), 225-231 (1990).
  • [5] S. Kwon and W.K. Chung, “Combined synthesis of state estimator and perturbation observer”, J. Dynamics Systems, Measurement,and Control 125 (4), 19-26 (2003).
  • [6] K. Youcef-Toumi and O. Ito, “A time delay controller for systems with unknown dynamics”, J. Dynamics Systems, Measurement,and Control 112 (1), 133-142 (1990).
  • [7] Z. Gao, “Active disturbance rejection control: a paradigm shift in feedback control system design”, American Control Conf. 1, 2399-2405 (2006).
  • [8] J. Han, “From pid to active disturbance rejection control”, IEEE Trans. on Industrial Electronics 56 (3), 900-906 (2009).
  • [9] R. Madoński and P. Herman, “An experimental verification of adrc robustness on a cross-coupled aerodynamical system”, IEEE Int. Symposium on Industrial Electronics 1, 859-863 (2011).
  • [10] R. Madoński, M. Przybyła, M. Kordasz, and P. Herman, “Application of active disturbance rejection control to a reel-to-reel system seen in tire industry”, Conf. on Automation Science andEngineering 1, 274-278 (2011).
  • [11] G. Tian and Z. Gao, “Benchmark tests of active disturbance rejection control on an industrial motion control platform”, American Control Conf. 1, 5552-5557 (2009).
  • [12] Y. Hou, Z. Gao, F. Jiang, and B.T. Boulter, “Active disturbance rejection control for web tension regulation”, Conf. onDecision and Control 5, 4974-4979 (2001).
  • [13] J. Vincent, D. Morris, N. Usher, Z. Gao, S. Zhao, A. Nicoletti, and Q. Zheng, “On active disturbance rejection based control design for superconducting rf cavities”, Nuclear Instrumentsand Methods in Physics Research, Section A 643 (1), 11-16 (2011).
  • [14] Q. Zheng, L. Dong, D.H. Lee, and Z. Gao, “Active disturbance rejection control for mems gyroscopes”, IEEE Trans. onControl Systems Technology 17 (6), 1432-1438 (2009).
  • [15] M. Przybyła, R. Madoński, M. Kordasz, and P. Herman, “An experimental comparison of model-free control methods in a nonlinear manipulator”, Lecture Notes in Artificial Intelligence7101 1, 53-63 (2011).
  • [16] Z. Gao, “Scaling and bandwidth parameterization based controller tuning”, American Control Conf. 6, 4989-4996 (2003).
  • [17] Q. Zheng, “On active disturbance rejection control: stability analysis and application in disturbance decoupling control”, PhD Thesis, Cleveland State University, Cleveland, 2009.
  • [18] W. Zhou, S. Shao, and Z. Gao, “A stability study of the active disturbance rejection control problem by a singular perturbation approach”, Applied Mathematical Sciences 3 (10), 491-508 (2009).
  • [19] Z. Gao, Y. Huang, and J. Han, “An alternative paradigm for control system design”, Conf. on Decision and Control 5, 4578-4585 (2001).
  • [20] Q. Zheng, L.Q. Gao, and Z. Gao, “On estimation of plant dynamics and disturbance from input-output data in real time”, Int. Conf. on Control Applications 1, 1167-1172 (2007).
  • [21] P. Kokotovic, H.K. Khalil, and J.O. Reilly, Singular PerturbationMethods in Control Analysis and Design, Society for Industrial and Applied Mathematics, London, 1986.
  • [22] H.K. Khalil, “Nonlinear output-feedback tracking using highgain observer and variable structure control”, Automatica 33 (10), 1845-1856 (1986).
  • [23] M. Michałek, “Controlling of manipulating robots”, Chair ofControl and Systems Engineering, Poznań University of Technology, Poznań, 2010 (in Polish).
  • [24] X. Yang and Y. Huang, “Capabilities of extended state observer for estimating uncertainties”, American Control Conf. 1, 3700-3705 (2009).
  • [25] Q. Ma, D. Xu, and Y. Shi, “Research of synthesis tuning algorithm of active-disturbance-rejection controller”, WorldCongress on Intelligent Control and Automation 1, 2788-2793 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.