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Abstract. In this paper we present two algorithms that may serve as efficient alternatives to the well-known PSI BLAST tool: SeedBLAST

and CTX-PSI Blast. Both may benefit from the knowledge about amino acid composition specific to a given protein family: SeedBLAST

uses the advisedly designed seed, while CTX-PSI BLAST extends PSI BLAST with the context-specific substitution model.

The seeding technique became central in the theory of sequence alignment. There are several efficient tools applying seeds to DNA

homology search, but not to protein homology search. In this paper we fill this gap. We advocate the use of multiple subset seeds derived

from a hierarchical tree of amino acid residues. Our method computes, by an evolutionary algorithm, seeds that are specifically designed for

a given protein family. The seeds are represented by deterministic finite automata (DFAs) and built into the NCBI-BLAST software. This

extended tool, named SeedBLAST, is compared to the original BLAST and PSI-BLAST on several protein families. Our results demonstrate

a superiority of SeedBLAST in terms of efficiency, especially in the case of twilight zone hits.

The contextual substitution model has been proven to increase sensitivity of protein alignment. In this paper we perform a next step in

the contextual alignment program. We announce a contextual version of the PSI-BLAST algorithm, an iterative version of the NCBI-BLAST

tool. The experimental evaluation has been performed demonstrating a significantly higher sensitivity compared to the ordinary PSI-BLAST

algorithm.
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1. Introduction

Since the time complexity of the optimal alignment prob-

lem is quadratic (e.g., the Smith-Waterman algorithm [1]),

thus too large for everyday tasks, most of sequence align-

ing is done using heuristics. One of such heuristics is imple-

mented in the ubiquitous BLAST software [2, 3], remarkably

successful in uncovering close homologs. Its extended iterat-

ed variant called PSI BLAST [3], similarly popular as pure

BLAST, is more sensitive in detecting the harder-to-find dis-

tant homologs. However it also suffers from some disadvan-

tages, e.g. when non-homologous proteins are incorporated

into the profiles the corrupted model leads to meaningless re-

sults. To prevent this phenomenon, the homology detection

method should extract knowledge specific to a particular fam-

ily of proteins. In this paper we propose two different exten-

sions of BLAST method that fulfill this requirement. One of

them, SeedBLAST, explores the seeding technique [4], while

the second one, CTX-PSI BLAST, benefits from the contex-

tual alignment model proposed in [5].

Both tools have been developed on the basis of the source

code of the NCBI BLAST tool1.

1.1. SeedBLAST: seeds in protein homology search. Stan-

dard BLAST runs in three phases, the first of them finding

short initial alignments, so called hot spots. However, quite

different methods are applied to define a hot spot for DNA

and protein sequences.

In the case of DNA, a hot spot is a short sequence of

identically matching nucleotides. Application of seeds en-

ables the consideration of non-identical matchings as well,

and thus finding out previously overlooked good initial align-

ments. This is why spaced seeds have been intensively in-

vestigated and have successful applications: improvements

of BLASTN [6, 7], sensitive alignment tools like Pattern-

Hunter [8–10] and Yass [11], automaton based theory for

modeling and analyzing seeds [4, 12]. The idea of using mul-

tiple seeds is also widely recognized [9, 13–15]. In this paper

we attempt to achieve similar results for protein homology

search, using the approach of [16].

In the case of protein sequences, a hot spot is defined

through a cumulative contribution of amino acid matches, not

necessarily identical. A short sequence of such matches is

considered a hot spot if their additive contribution (score)

exceeds a predefined threshold. It is thus not clear whether

seed-based approaches may measure up with the cumulative

scores in expressibility and effectiveness. A first attempt to

compare the two approaches has been done in [16], with the

conclusion that subset seeds [4] may offer an attractive al-

ternative to the “cumulative” approach of BLAST (cf. also

discussion and references therein concerning expressibility of
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different classes of seeds). It is also argued that the algorith-

mic cost may thus be reduced, as application of seeds allows

the use of a direct indexing scheme based on hashing.

Recently the concept of hash seed for protein homology

search has been proposed in [17]. It also applies amino acid

grouping (in this case based on BLOSUM matrix) to design-

ing good seeds that allow for a direct hashing scheme. The

subset seeds, as considered in this paper, can be regarded as

another (potentially more powerful) type of hash seeds.

Moreover, adaptive seeds (being matches that are cho-

sen based on their rareness, instead of using fixed-length

matches), has been implemented in the alignment tool called

LAST [18], which enables fast and sensitive comparison of

large sequences with arbitrarily nonuniform composition.

A fundamental notion in the seed theory is an alignment

alphabet, whose letters correspond to matching two residues.

In the case of nucleotide sequences, the alignment alphabet

has 6 (or 12, if directional) letters. In the case of amino acid

sequences, however, the alignment alphabet has at least 200

letters, which makes an exploration of even medium length

sequences costly and difficult. A way of approaching the prob-

lem is to reduce the alignment alphabet, exploiting similari-

ties among various amino acids [16]. By applying the subset

seed the complexity of alignment description may be reduced,

while maintaining the biological information content. The idea

of subset seeds [4], can be viewed as an intermediate concept

between ordinary spaced seeds and vector seeds. In this ap-

proach different types of matches (or mismatches) are distin-

guished, as a seed letter corresponds to a subset of matches.

In the case of protein sequences, for instance, it might be ben-

eficial to distinguish mutations inside some predefined amino

acid groups (like aliphatic, aromatic, tiny, etc. [19]) from mu-

tations between these groups.

The aim of this paper is to experimentally confirm the val-

ue of applying seed-based hot spot search, using the approach

of [16]. In short, as our technical contribution we propose a

method of computing a well-performing multiple space seed,

and present an implementation of a new seed-based hot spot

search routine. Furthermore, we advocate the use of determin-

istic finite automata (DFAs) as a seed representation. Finally,

we experimentally confirm a supremacy of this new approach

over the original NCBI-BLAST hot spot search.

We investigate, and search for, reduced alignment alpha-

bets, called seed alphabets, that can be derived from hierarchi-

cal trees of amino acids. Such trees were designed, e.g., in [20,

21]; for our purposes we compute, (by amino acids cluster-

ing), a specific tree for a given protein family. An advantage of

using hierarchical trees is that the alphabets are always transi-

tive (i.e., each letter corresponds to a transitive set of match-

ing pairs) and thus enable application of the direct hashing

scheme.

We search for a well-performing alphabet and a multiple

subset seed over it with the use of an evolutionary algorithm.

The fitness evaluation is based on computing the seed sensi-

tivity and selectivity in the way suggested in [4].

The multiple seed, represented as a DFA, is then used

in the hot spot search of BLAST. We have implemented an

extension to the NCBI-BLAST software, called SeedBLAST,

that accepts a multiple subset seed as its input parameter. The

extension is written in C++, relies on the template mechanism,

and is prone to compiler optimizations (most functions can

be inlined). An important advantage of our implementation is

that being developed within the NCBI-BLAST framework, it

inherits all stable and tested features of this implementation.

The first test results can be perceived as promising: al-

though our multiple seed selection method is rather simplis-

tic, our tool returns more interesting hits than the standard

BLAST with comparable settings. Some returned hits tend to

be long although having only medium E-value, the type of

hits known to be dimmed and not reported by BLAST. This

kind of hits is termed twilight zone after [22].

Furthermore, this methodology can be useful for searching

for particular type of alignments. Given a set of alignments,

one can construct a specific seed automaton and perform data-

base search for this certain type of alignments. Following this

idea we investigated the ability to align known structurally

homologous domains of the Rhodopsin family of G-protein

coupled receptors (GPCRs). The outcome of our experiment

showed a significant difference between NCBI-BLAST and

SeedBLAST, in favor to the latter: our method yielded much

longer alignments covering up to 70% of the entire domain,

even for proteins sharing low sequence identity (20–30%).

1.2. CTX-PSI BLAST: context-sensitive protein homology

search. The contextual (context-sensitive) alignment of bio-

logical sequences was proposed in [5], as an extension of the

classical alignment where the neighboring residues influence

the cost of substitutions. The paper [5] introduced the rudi-

ments of the theory of contextual alignment, and a prototype

tool based on the dynamic algorithm of Smith and Water-

man [1]. A complement of this work was the computation

of biologically significant contextual substitution tables [23],

based on BLOSUM family [24].

The contextual approach is significantly more complex

than the ordinary one, both with respect to the underlying

theory as well as from algorithmic point of view. To only

mention one additional new aspect brought by the approach,

note that the final score of alignment typically depends on the

order of substitutions performed, as illustrated below.

On the positive side, it has been observed that the con-

textual approach increases sensitivity of alignment. These

promising results encouraged for a further work on efficient

implementation of the contextual alignment. A a natural next

step, in [25] a contextual version of the famous BLAST [2]

algorithm has been proposed. Significantly higher sensitivity
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of the contextual alignment was confirmed, while keeping the

amount of additional computations needed on a reasonable

level.

In this paper we do a next step in the program: we an-

nounce a contextual version of PSI-BLAST. We perform an

experimental evaluation of accuracy of our algorithm com-

pared to structural alignments, using the methodology of [26].

Organization of the paper. In Sec. 2 we present the al-

gorithm to design the seeds used for the protein alignment

and then is Sec. 3 we describe how the SeedBLAST tool

uses the seeds. Section 4 is devoted to the presentation of

the other tool, CTX-PSI BLAST, a contextual extension of

PSI BLAST. Finally, in Secs. 5 and 6 both tools are evaluat-

ed: their efficiency and sensitivity are compared with BLAST

and PSI BLAST. The last section summarizes some directions

for further work. An initial version of this paper, presenting

SeedBLAST, has appeared as [27].

2. Subset seed design

General approach. Given a protein family, we assume that

a small representative subset of this family has already been

aligned well (for example manually by experts), and is avail-

able as a training set. The algorithm designing subset seed

attempt to extract information about the structure of the fami-

ly from this set, and use it to produce alignments for the entire

family. In the first phase a hierarchical tree is constructed that

represents similarities of amino acids. Then, a seed alpha-

bet is designed, along with a set of seeds. This is a learning

phase, and runs independently of our BLAST enhancement.

Next, the seed alphabet along with the corresponding set of

seeds is used by the SeedBLAST algorithm to find hot spots.

Afterwards, the computation of SeedBLAST follows the stan-

dard BLAST scheme.

Hierarchical tree of amino acids. Let Σ = {A, C, D, . . .}
be the amino acid alphabet (|Σ| = 20). A valid hierarchical

tree of amino acids is a binary tree whose leaves are labeled

bijectively by elements of Σ, and whose every internal (non-

leaf) node has two children. An example of such a tree is

shown in Fig. 1. Such a tree constitutes a parameter in our

approach; we assume that it corresponds to some biological-

ly significant hierarchical clustering of amino acid residues,

c.f. [21, 20].

Any non-leaf node v of T is represented by a set of (la-

bels of) leaves in the subtree rooted in v. This set is denoted

by Σv . In particular, the root is labeled by the whole set Σ.

There are precisely |Σ| − 1 = 19 non-leaf nodes.

Our basic intuition is as follows. Think of a leaf labeled

by A ∈ Σ as a representation of the exact match A—A. Then

a node v represents all matches A—B for A, B ∈ Σv.

The tree is obtained from the training set of alignments

in the following way: first, for each pair of amino acids the

number of times they have been aligned one with another is

counted, and then, using those counts, the amino acids are

hierarchically clustered through neighbor-joining method.

Fig. 1. The hierarchical tree of amino acids proposed by [20].

Seed alphabets and seeds. From now on we assume a fixed

hierarchical tree T . The tree nodes are partially ordered by a

natural ordering induced by the tree structure (we call it tree

ordering). This coincides with the inclusion ordering of the

labeling sets: v1 ≤ v2 ⇐⇒ Σv1
⊆ Σv2

. We assume here for

technical convenience that the leaves are labeled by singletons

{A} instead of single amino-acids A ∈ Σ. Below we consider

sets of nodes of T , ordered by inclusion as well. Certain sets

of nodes will be seed letters (potential elements of a seed

alphabet).

A seed letter is defined as any subset α of nodes such

that:

(i) (maximality) α contains all leaves and

(ii) (downward closedness) whenever v ∈ α and v′ < v then

v′ ∈ α.

Hence, a single seed letter α is defined as a lower set

of a maximal antichain wrt. the tree ordering. This antichain

contains the maximal elements of α wrt. the tree ordering and

may be visualized by a horizontal cut through the tree T . Seed

letters are naturally ordered by inclusion. The smallest one is

the “exact match” seed letter #, containing only the leaves.

The largest one is the “don’t care” seed letter , containing

all the nodes of T . One particular seed letter, denoted by @,

is obtained by removing from the root node. We place an

additional restriction on alphabets that we use, that they must

contain both # and .

The maximal elements of a seed letter α wrt. the tree

ordering form a partition of Σ. Thus α represents naturally

an equivalence relation on Σ: A and B are related iff they

belong jointly to some node of α; i.e., iff there exists some

v ∈ α such that A ∈ Σv and B ∈ Σv . We feel free to write

(A, B) ∈ α in this case. The induced equivalence is identity

relation in case of # and full relation in case of . The inclu-

sion ordering of seed letters coincides with the inclusion of

the induced equivalences.

Certain families of seed letters will be allowed as seed

alphabets. Essentially, we forbid two letters α1, α2 that are

incomparable by inclusion. A seed alphabet is a family A of

seed letters totally ordered by inclusion: for each α1, α2 ∈ A,

either α1 ⊆ α2 or α2 ⊆ α1. Alphabets with this proper-

ty are called hierarchical in [16]. We used this assumption

Bull. Pol. Ac.: Tech. 60(3) 2012 497

Unauthenticated | 89.67.242.59
Download Date | 5/19/13 8:28 PM



M. Startek, S. Lasota, M. Sykulski, A. Bułak, L. Noé, G. Kucherov, and A. Gambin

as it leads to a nice mathematical formalization, namely the

family of seed alphabets forms a constrained independence

system [28, 29]. We show that even with this restriction very

efficient seeds can be obtained. Thus, in this paper we will

not consider non-hierarchical alphabets. Note that, again, the

seed alphabets may be naturally ordered by inclusion as well.

We define a seed over a seed alphabet A as a finite word

over A. A multiple seed is a pair consisting of a seed al-

phabet and a set of seeds over that alphabet. We say that

a seed s = s1s2 . . . sn aligns two amino acid sequences

a = a1a2 . . . an, b = b1b2 . . . bn, if and only if for all

i ∈ {1, 2, . . . , n}, (ai, bi) ∈ si.

Foreground sensitivity (or just sensitivity) of a multiple

seed M , denoted by sensF (M), is the number of positions

in the training set of alignments matched by at least one of

the seeds from M , divided by the total number of positions.

Foreground sensitivity is computed directly from the training

set.

Background sensitivity of a seed corresponds to the proba-

bility of matching two aligned random sequences. We assume

that the background model for amino acid sequences is given

as a Markov chain. For our experiments, the Markov chain

models of orders 1, 2 and 3 were learned from the TrEMBL

database [30] using GenRGenS Java tool [31]. The background

sensitivity of a seed was computed with the use of Markov-

ian probability transducer as described in [4]. Background

sensitivity of a multiple seed M , denoted by sensB(M), is

estimated from above by the sum of background sensitivities

of each of the individual seeds in M (the estimation is sharp

only if seed occurrences are independent).

Evolutionary approach. Optimizing multiple seeds is

recognized as a highly non-trivial task [12, 32, 33]. In the

case of hierarchical subset seeds the combinatorial structure

of seed alphabets suggests hardness of the optimization prob-

lem (see [16] for details). Therefore we decided to use an

efficient heuristic algorithm.

In the proposed approach seed alphabets and seeds are

simultaneously chosen through an application of a genetic

algorithm. The genetic algorithms are used to solve various

optimization problems [34]. They work by first generating

a random multiset (initial population) of potential solutions,

evaluating the function being optimized (fitness function) for

each one of them, culling a percentage of them with low val-

ues of such function, cloning and slightly altering (mutating)

the rest at random – and repeating this process until a satis-

factory solution is obtained.

In our case, the potential solutions are pairs: a seed alpha-

bet, and a set of seeds. A mutation applies thus either to the

alphabet, or to one of the seeds. Mutating the alphabet is one

of the following: deleting a randomly chosen letter (except for

the top # and bottom one), altering a letter (by adding a tree

node to it, or removing a tree node – but only if that would not

violate the constraint that the alphabet must be hierarchical),

or adding a random (non-conflicting) letter. While modifying

the letter one has to respect its definition, i.e. the (i) maxi-

mality and (ii) downward closedness conditions. Mutating the

set of seeds means either deleting one of the seeds, adding a

random seed, or replacing a random letter in a random seed

by one of its neighbors in the alphabet. Algorithm 1 explains

the details.

A multiple seed may contain individual seeds of differ-

ent lengths in general. However to simplify and speed-up the

computations we have decided to fix the length; all individual

seeds computed by the evolutionary algorithms have the same

length W = 5.

Algorithm 1: Genetic Algorithm

Input: Protein family F

Output: A multiple seed for family F

begin
Population ← a multiset of 100 randomly chosen

multiple seeds (the initial population);

while Not Run Out Of Time do

foreach multiple seed M ∈ Population do
f ← fitnessF (M);

Randomly, based on f, choose one of the

following:

• Population← Population \ {M};
– with increasing probability for

low values of f

• Population← Population \ {M}∪
{Mutate(M)};
• Population← Population∪
{Mutate(M)}; – with increasing

probability for high values of f

end

end

return the member of Population that maximizes

fitnessF

end

The most important aspect of every optimization algo-

rithm, a genetic algorithm being no exception, is the fitness

function chosen. Usually, what we want to obtain is a seed

that has as low background sensitivity as possible, while at the

same time having as high foreground sensitivity as possible.

So, the first idea might be to choose the following function:

fitness
1
(M) =

sensF (M)

sensB(M)
.

This, however, yields unsatisfactory results – the evolution just

results in a smallest multiple seed possible, with minuscule

foreground and background sensitivity.

The fitness function has to reflect the trade-off between

foreground sensitivity and background sensitivity. It should

be noted that both of these play similar role to NCBI-BLAST

’-f’ parameter (i.e. the threshold for the cumulative score of

three hit positions). The ’-f’ parameter allows one to adjust

the length of computation, and the quality of results. With

SeedBLAST it has been split in two – the sensF (M) part is

498 Bull. Pol. Ac.: Tech. 60(3) 2012

Unauthenticated | 89.67.242.59
Download Date | 5/19/13 8:28 PM



Efficient alternatives to PSI-BLAST

responsible for the quality of results, while sensB(M) is re-

sponsible for the length of computation. Keeping that in mind,

we can select a fitness function that can match our needs –

using it, we can in effect specify ’give me the best results you

can achieve within a given time-frame’ – or, the opposite –

’give me results at least this good, and I don’t care how long

it takes to compute them’. Or everything in-between.

An example of fitness function that adheres to the first

approach might be as follows:

fitness
2
(M) =

{

0 if sensB(M) > c

sensF (M) otherwise

The second approach is fulfilled by the following fitness func-

tion:

fitness
3
(M) =











sensF (M) if sensF (M) < c

sensF (M)

sensB(M)
otherwise

For further tests, described in the rest of the paper, we

have chosen the function fitness
3
, with c = 0.15; except for

the performance evaluation, where we prefer to use fitness
2

(in order to make the fair comparison with NCBI-BLAST).

This decision was taken through trial and error – there

is no guarantee that this is the optimal choice. The multi-

ple seed that was computed and used for further experiments

exhibits foreground sensitivity equal to 0.179906, and back-

ground sensitivity equal to 0.01047971. The whole multiple

seed, consisting of 3686 individual seeds, is not subject to a

concise presentation.

3. SeedBLAST: seed-based extension of BLAST

Given a query, the goal of the first phase of the BLAST algo-

rithm is to index all subwords of length W (chosen as a pa-

rameter). Not only exact subwords are indexed but also their

predefined neighborhoods, with respect to a metric determined

by the cumulative score according to the BLOSUM matrix.

With each query, the occurrences of the neighborhoods are

stored in a dictionary-type data structure; current version of

NCBI-BLAST uses a hash table.

The size of neighborhood is crucial as it must be stored

in a dictionary. BLAST uses a threshold on the BLOSUM

score of an alignment of a segment pair. The threshold repre-

sents the trade-off between sensitivity and time and memory

efficiency since it has a direct impact on the number of ana-

lyzed hits. The default threshold was adjusted experimentally

by the BLAST developers and currently equals 11 in protein

NCBI-BLAST.

We seek to describe the neighborhood using our selected

multiple seed. In principle, the method may be applied to any

multiple seed, possibly containing words of different lengths.

However, in the case study described in the following sec-

tion, all the seeds have the same length W = 5. Moreover,

all individual seeds are constructed over the same alphabet.

This assumption greatly simplifies the seed design and allows

to construct a single automaton for looking for all hot spots

simultaneously.

3.1. Hot spot search using DFA. A trie, or a prefix tree, is a

dictionary with a tree-structured transition graph, in which the

start node is the root and all the leaves are final nodes [35].

Tries are especially convenient when the keys are short strings:

the tree edges are labeled by letters, and retrieving a value as-

signed to a given key w is done by following the w-labeled

path in the tree, thus very efficient.

It is assumed that labels of edges outgoing from a node

are all different. A trie may be thus seen as an acyclic DFA

recognizing a finite language (the language contains labels of

all the paths going from the root to a leaf). Upon acceptance,

the automaton in addition returns the value assigned to a word

read (being a key). In our case, the value will be typically a

set of positions in a query.

In our algorithm, to be described below, we construct a

number of different tries (automata). To optimize for mem-

ory, on the implementation level we always conform to the

Mealy paradigm of keeping values attached to transitions, not

vertices.

In a preprocessing phase a trie S is constructed to repre-

sent the multiple seed. Its input alphabet is the seed alphabet

A.

Next, we proceed with constructing a trie Q, over the in-

put alphabet Σ, that keeps all subwords of length W from

a given query. For each such word we store in Q pointers

to all positions in query where it appears. This will reduce

operations in the following phases. It is worth noting that Q

may be used to process jointly multiple queries. Analogously,

NCBI-BLAST also permits many queries to be stored jointly

in its hash table.

As a consecutive step, a trie N is built to store neighbor-

hoods. Its alphabet is Σ, and language is given by

N = Q ∝ S :=

{w | for some q ∈ Q and s ∈ S, s aligns q and w}.

The trie N is constructed by systematically traversing a prod-

uct of Q and S. The value assigned to a word w in N denotes,

similarly as in Q, a set of positions in the query. It is given

by the union of values assigned to q in Q, for all q ranging

over

{q ∈ Q | for some s ∈ S, s aligns q and w}.

On the implementation level, the union is represented by a

suitable pointer data structure.

Finally we construct an automaton H over the alphabet

Σ, whose aim is to find hot spots in the subject sequences.

Operation of H is similar to a pattern-matching automaton. It

is built on the basis of the automaton N , by adding additional

edges outgoing from the final (leaf) nodes. To easily explain

the construction, we recall that each node of N is uniquely

determined by the labeling of the path from the root to that

node. Fix a leaf determined by w and a letter a ∈ Σ; the

outgoing a-labeled edge will point to a node determined by

the longest suffix of wa that belongs to N . Clearly, in contrast

to all other automata, H may have cycles.

Having constructed H , next BLAST phases remain un-

changed. Each subject sequence is traversed along, starting
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from the root of H . At each step, the value assigned to the

current node (state) of H informs whether any hot spots are

found at the current position in a subject. If so, the hot spots

are stored for further processing in the following phases of

BLAST.

4. CTX-PSI BLAST: contextual extension

of PSI-BLAST

CTX-PSI-BLAST, the contextual extension of PSI-BLAST,

has been implemented as an extension of the NCBI BLAST

tool. We have also exploited the CTX-BLAST source

code [25]. The web page of the contextual PSI-BLAST

project2 contains further informations, user documentation,

and the complete source code.

CTX-PSI-BLAST, similarly as PSI-BLAST, constructs in

each phase a PSSM (Position-Specific Scoring Matrix) based

on a multi-alignment found in that iteration. Assume that the

alphabet is of size m; typically m = 20 as we primarily con-

sider protein sequences here. In standard PSI BLAST, a PSSM

is an n×m matrix, where n corresponds to the length of the

query sequence. In entry (i, x) the matrix stores the score of

aligning the ith column with x.

In our contextual approach, a PSSM is an n × m3 ma-

trix, whose entry indexed by (i, x, a, b) contains the score of

aligning the ith column with x, denoted i 7→ x, in the con-

text (a, b). Thus the context consists of the two neighboring

symbols, the left neighbor a and the right neighbor b, and the

score may depend on these two symbols.

Here are the major extensions we have introduced to the

original PSI-BLAST code:

1. replacing the classical BLAST alignment routine with the

one provided by CTX-BLAST;

2. contextual extension of the PSSM (Position-Specific Scor-

ing Matrix) data structure;

3. adaptation of the method of computing a PSSM;

4. adaptation of the alignment algorithm against a PSSM, to

work with the contextual PSSMs.

In the first iteration a CTX-BLAST routine is called, and

a contextual PSSM is computed. In every subsequent iteration,

an adapted CTX-BLAST routine is run, that aligns, instead of

the input sequence, a PSSM computed in the previous iter-

ation. However, unlike in CTX-BLAST, it is sometimes not

clear how to choose a context of a substitution, as a PSSM

is considered instead of a query sequence. As an illustration,

consider the example given in Fig. 2. For a distinguished sub-

stitution 8 7→ D, it is clear what is its left context only if

the position 7 is already substituted. The same applies to the

right context of 8 7→ D. We have decided to apply a sim-

plifying solution in such situations, and to choose as context

the neighboring symbols from the subject sequence S. In the

example from Fig. 2, the left context is thus chosen to be A

and the right one is E.

P: . . . 6 7 8 9 10 . . .

. . . 6 7 D 9 10 . . .

. . .

S: . . . C A D E A . . .

Fig. 2. A fragment of alignment of a subject sequence S agains a

PSSM. A substitution 8 7→ D is distinguished, in the context (7, 9).

The crucial point of the CTX-PSI-BLAST algorithm is the

calculation of statistical significance of the alignment. Ac-

cording to [36], statistics of optimal non-gapped contextual

alignment follows the same extreme value distribution as in

the non-contextual case [37]. Hence we have decided to adopt

the island method [38], used also by [25], for estimation of

the parameters K and λ required for E-value calculation for

the alignment score S of two sequences of length m and n,

respectively:

E-value(S) = Kmne−λS.

Using the method suggested in [38], we have obtained the

values K = 0.008 and λ = 0.211.

5. Evaluation of SeedBLAST

Datasets. We used a dataset extracted from the Pfam data-

base, that contains expert-made protein structural families and

their multi-alignments, later extended to larger families using

profile-HMMs [39, 40].

A protein family, exhibiting a low identity percentage, has

been selected from Pfam (namely PF00001). This family con-

tains, amongst other G-protein-coupled receptors (GPCRs),

members of the opsin family, which have been considered

to be typical members of the rhodopsin superfamily. They

share several motifs, mainly the seven transmembrane helices

(7tm 1 domain). This domain will be the main focus of our

experiment.

The rhodopsin-like GPCRs themselves represent a wide-

spread protein family that includes hormone, neurotransmit-

ter and light receptors, all of which transduce extracellular

signals through interaction with guanine nucleotide-binding

(G) proteins. Although their activating ligands vary widely

in structure and character, the receptors are believed to adopt

a common structural framework comprising 7 transmembrane

helices.

The expert-made multi alignment of 7tm 1 domains from

64 of the family members was downloaded (the whole fam-

ily contains 16975 proteins), and used as a training set to

obtain a multiple seed. The latter was subsequently used by

the SeedBLAST algorithm to compute pair-wise alignments

of the 7tm 1 domain of all the family members. The results

were compared with those obtained by the standard BLAST

algorithm.
For a fair comparison, it had to be ensured that both al-

gorithms actually run with the same background sensitivity.
Thus, the ’-f’ parameter of NCBI-BLAST was adjusted in the
course of the experiment to obtain similar background sensi-
tivity to that of the multiple seed used by SeedBLAST. The

2http://ctx-psi-blast.sourceforge.net/index.html
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table shows typical values of the ’- f’ parameter together with
the corresponding values of background sensitivity:

-f parameter of NCBI-BLAST SeedBLAST background sensitivity

11 (default) 0.002195

10 0.005342

9 0.00816

8 0.012276

7 0.018163

The background sensitivity of the seed used by

SeedBLAST was 0.01047971; this corresponds to 8 or 9 as

the value of the ’-f’ parameter in the NCBI-BLAST invoca-

tions.

As the alignment concerned only the domain fragment of

each protein, and the domain is already known to be the same

in each protein, every alignment found should be considered

biologically significant.

5.1. Comparing efficiency. Figure 3 shows the symmetric

difference between hits found by NCBI-BLAST, and those

found by SeedBLAST (that is, alignments found by one of

the algorithms but not the other).

Fig. 3. Symmetric difference between outputs of BLAST and

SeedBLAST

We observe that alignments found by SeedBLAST are in

general longer than those found by BLAST, and thus provide

better coverage of the domain. Especially many alignments

that have not been found by BLAST lie in the so-called twi-

light zone [22] – namely long alignments with low identity

percentage, and thus low E-value, that nevertheless are bio-

logically significant. The reason why SeedBLAST constructs

longer alignments is that it detects much more biologically

significant hot-spots. A supremacy of SeedBLAST becomes

more apparent in view of Fig. 4.

To obtain this diagram, pairs of domains for which BLAST

and SeedBLAST found different alignments were chosen from

the set of all alignments, and the coverage of domains by these

alignments was computed. We conclude that SeedBLAST

is much more efficient in providing biologically significant

alignments than the standard BLAST algorithm.

Fig. 4. Domain coverage by alignments found by BLAST and

SeedBLAST

The reason for SeedBLAST’s improved efficiency is the

inclusion of subset seeds specifically tuned for the domain un-

der consideration. When one aims at aligning different family

of proteins appropriate multiple seed should be designed and

used in SeedBLAST. We conclude that SeedBLAST appears

much more efficient than BLAST in recognizing protein do-

mains, as it is both more effective in covering the entire do-

main as well as much less likely to cover anything beyond the

sought-for domain.

5.2. Comparing running time. In addition, SeedBLAST and

NCBI-BLAST were compared with respect to their running

time (preprocessing, i. e. seed design phase is not included).

For a fair comparison, again, we had to ensure that both al-

gorithms actually run with the same background sensitivity.

In case of SeedBLAST, we had to be able to control the

background sensitivity of the multiple seed used. This led us

to choose the fitness function:

fitness
2
(M) =

{

0 if sensB(M) > c

sensF (M) otherwise

(cf. Sec. 1) that seems to suit best to this purpose: the parame-

ter c corresponds directly to the desired background sensitivity

of the multiple seed.

In case of NCBI-BLAST, its background sensitivity can

be adjusted by the ’-f’ parameter. For the test, we picked sev-

eral different values of the ’-f’ parameter, and then calculated

the background sensitivities induced by these values. These

background sensitivities were taken as the value of the c pa-

rameter in the above fitness function, exploited in the compu-

tation of multiple seeds used by SeedBLAST. The results are

summarized in the Table 1.

Table 1

f: -f parameter of NCBI-BLAST c: corresponding background sensitivity

(parameter c) used in seed design, sensB(M): actual background

sensitivity of the multiple seed SeedBLAST, NCBI-BLAST: running time

of NCBI-BLAST,SeedBLAST: running time of SeedBLAST

f c sensB(M) NCBI-BLAST (sec.) Seed-BLAST (sec.)

15 0.000306 0.00030564 1.20 0.45

11 0.002195 0.00211789 3.32 1.40

8 0.012276 0.01156471 12.17 4.74

5 0.026406 0.02622019 23.84 12.40
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In fact, because of the unpredictable nature of multiple

seed evolution, we cannot control the background sensitivity

of a multiple seed exactly. This gives SeedBLAST a slight ad-

vantage over the other, represented by the difference between

the c parameter (equal to the actual background sensitivi-

ty NCBI-BLAST runs with), and the background sensitivity

of an obtained multiple seed. Still, even accounting for this

slight difference, the results show that SeedBLAST algorithm

is over two times faster than NCBI-BLAST on average. As

the SeedBLAST is an extension of NCBI-BLAST we con-

clude, that the speed-up is achieved due to faster hot-spot

identification stage. We argue that the multiple seed approach

enables to detect biologically significant hot-spots, e.g. those

corresponding to functional residues [41].

It is worth mentioning here that the performance of

SeedBLAST (being the extension of standard NCBI-BLAST

implementation) is comparable with the performance of subset

seed based tools that use parallel implementation or special-

ized hardware [42, 43].

Comparison with PSI-BLAST. One can see the close sim-

ilarity between the seed approach and position specific scor-

ing matrices used to improve homology search. Therefore

we decided to compare the selectivity and sensitivity of

SeedBLAST to the efficiency of popular PSI-BLAST algo-

rithm. The experiment was performed on two protein families

(Surface antigen – PF01617 and Globin – PF00042). The per-

formace of both algorithms on Globin family was almost iden-

tical (data not shown). On the other hand on Antigen family

SeedBLAST achieved much better selectivity while keeping

the same level of sensitivity. From the analysis of found align-

ments grouped by logarithm of their E-value we conclude that

within the Antigen family SeedBLAST finds all of the align-

ments that PSI-BLAST does (except for a small fraction of

some non-significant ones with E-values of 1 and more). For

proteins which we know to be unrelated to Antigens with

Antigens SeedBLAST finds less non-homology-related align-

ments than PSI-BLAST does.

Alphabet used for experiments. The alphabet contains 8

letters. We provide its representation as a hierarchy of nested

equivalence relations over amino acid alphabets.

: {CFY WMLIV GPATSNHQEDRK}

1 : {RKQED, IV LFM, A, S, Y, T, G, N, H, C, P, W}

2 : {RKQED, IV L, F, M, A, S, Y, T, G, N, H, C, P, W}

3 : {RKQ, ED, IV L, F, M, A, S, Y, T, G, N, H, C, P, W}

4 : {RK, Q, ED, IV L, F, M, A, S, Y, T, G, N, H, C, P, W}

5 : {RK, Q, E,D, IV, L, F, M, A, S, Y, T, G, N, H, C, P, W}

6 : {R, K, Q, E, D, IV, L, F, M, A, S, Y, T, G, N, H, C, P, W}

# : {R, K, Q, E, D, I, V, L, F, M, A, S, Y, T, G, N, H, C, P, W}

(1)

5.3. Usage. To run compiled file blast in SeedBLAST mode

please provide the parameter: -pblastp− seedfa.

There is one more command line parameter, options are

read from a config file.

-x File to read SeedFA extension configuration

from.

(default ./seedfa.cfg) [String]

default = seedfa.cfg

Config file options:

Allowed options in SeedFA config file

(seedfa.cfg):

Configuration:

-A [ --alignalph-file ] arg

name of a file with the alignment alphabet

-S [ --seed-file ] arg

name of a file with the alignment seed

-M [ --seed-file-homit ] arg

shall first line in the seed file be omitted

flag

-K [ --seed-file-kind ] arg

type of seed-file (0 - all hash values from

the file; 1 - all string descriptions from

the file; log(P/Q) based choice:: 2 - seedCo

unt, 3 - log(P/Q), 4 - seedCover, 5 - Pprob,

6 - Qprob; see manual for more info

--seed-file-param arg (=1)

parameter threshold for log(P/Q) based choi

ce of seeds (2-6)

6. Evaluation of CTX-PSI-BLAST

The experimental evaluation of the CTX-PSI-BLAST algo-

rithm relies on a methodology applied in [26] for PSI-BLAST.

The authors of [26] selected 123 pairs of evolutionary dis-

tinct structural homologous protein sequences. PSI-BLAST

was run for each of the sequences, in order to check if the oth-

er sequence from the pair will be selected from the database.

For all hits, a degree of similarity to the structural alignment

has been computed. Out of 123 pairs, 36 have been found,

which amounts to 29.3%. For 16 pairs, both sequences of the

pair have been found.

Since this experiment has been performed, the PSI-

BLAST tool undergone many improvements and optimiza-

tions. Our implementation has been done based on the BLAST

version denoted as Mar 17 20083. For the purpose of reliable

comparison, we have repeated the experiment of [26] using

the same version of PSI-BLAST. Then, the same experiment

has been performed using CTX-PSI-BLAST.

6.1. Input data. The 123 sequence pairs were selected from

the DAPS (Distant Aligned Protein Sequences) database ac-

cording to the following criteria:

1. lengths of both sequences are at least 30

2. resolution of both sequences at least 350 pm

3. the difference of length is at most 50% of the smaller length

3The source code is accessible at: ftp://ftp.ncbi.nih.gov/toolbox/ncbi tools++/2008/Mar 17 2008/
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4. the length of the structural alignment is at least 60% of the

greater length

5. the similarity is not identified with the Smith-Waterman

algorithm.

The average similarity ratio of the selected pairs was 12%.

As in [26], for tests we have used the NR database

(NonRedundant nucleotide database). In our experiments, the

PSI-BLAST and CTX-PSI-BLAST were run, similarly as PSI-

BLAST in [26], with the default parameters and 5 iterations.

The only parameter that was set explicitly was the number of

sequences yielded (parameter num alignments), by default

set to 250. We have chosen to switch this parameter off –

in such case all sequences are yielded with e-value smaller

than 10.

For estimating quality of the results we have used two

ratings:

• sensitivity – the ratio of properly located amino-acid pairs

to the length of the DAPS alignment

• specificity – the ratio of properly located amino-acid pairs

to the length of alignment found by CTX-PSI-BLAST.

6.2. Results. PSI-BLAST identified 46 pairs (37.4%) out of

123. In case of 22 pairs, both sequences have been found.

For CTX-PSI-BLAST, the corresponding numbers of hits are

43 (35%) and 21. Notably, the results of PSI-BLAST were

significantly better than those reported in [26] – this is im-

plied by recent improvements of the algorithm, as well as by

continuous updates of the database used. The following table

summarizes the results:

PSI-BLAST CTX-PSI-BLAST

total number of hits 68 (28.8%) 64 (26%)

number of identified pairs 46 (37.4%) 43 (35%)

mutual hits 22 21

average sensitivity 42.96% 44.78%

average sensitivity in the best hit 48.8% 47.64%

number of lost hits 4 7

The last row contains the number of pairs that have been

located by the algorithm at some intermediate iteration but

were not included in the final result yielded after the last it-

eration.

With respect to the number of pairs identified, PSI-BLAST

slightly out-performed the contextual one. With respect to the

quality of results, the two algorithms were very comparable.

For instance, the fraction of hits above the 50% sensitivity

threshold was around 45% in both cases. Interestingly, this is

a major progress compared to the experiments in [26] where

this number was only around 35%.

A valuable observation is that the contextual PSI-BLAST

identified 6 pairs not located by the original PSI-BLAST. As

a conclusion, we argue that CTX-PSI-BLAST, although itself

does not out-perform PSI-BLAST with respect to sensitivity,

may be considered a valuable tool used in combination with

PSI-BLAST.

In the remainder of this section we present detailed re-

sults yielded during the experiment by PSI BLAST and CTX-

PSI BLAST. For comparison, we stick to the same format as

in [26]. Figure 5 illustrates the performance of both algorithms

in subsequent iterations. Notice, that contextual algorithm

identifies much more structural homologs during the second

and subsequent iterations than the standard PSI BLAST. The

probable reason for this behavior may be greater resistance to

non-homologous proteins which are more rarely incorporated

into the profile.

Fig. 5. The iteration that found a pair. 0 denotes the initial iteration

that runs without a PSSM. PSI-BLAST (top) compared to CTX-PSI

BLAST (bottom)

Other interesting phenomenon can be observed: sensitivi-

ty and specificity for selected iterations are closely correlated

in the CTX-PSI BLAST algorithm, while in the standard ap-

proach, no such correlation can be observed. This is mainly

due to the fact that contextual alignment is usually longer and

has size comparable to the structural alignment size. Similar

observations were made in [25].

6.3. Usage. The following command runs the standard ver-

sion of PSI-BLAST:

./psiblast -in query -db database -num_itera

tion iter \ -out output_file

where query is the input query sequence in FASTA format;

database is the name of database to scan for significant

alignments; iter is the number of iterations to be run (PSI-

BLAST may run less iterations then specified if a search con-

verges); output file is a file to which the program output
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will be written (if a specified file exists, it will be overwritten).

The contextual version of PSI-BLAST requires two addition-

al parameters: ctx matrix defines the contextual substitution

table (e.g., CTX-BLOSUM62, the contextual counterpart of

BLOSUM62); and ctx stat defines the file containing the

parameters for statistical significance calculation in the follow-

ing order: α, β, λ and K . Parameters must be separated with

a single space. The exemplary usage of CTX-PSI-BLAST on

the NR database performing 6 iterations is the following:

./psiblast -in some.seq -db nr -num_iteration 6

-out some.out \ -ctx_matrix blosum62.nrm

-ctx_stat stat.txt

7. Further research

To confirm usability of both the tools, further experiments us-

ing in-sample, out-of-sample tests and larger families would

be useful.

In case of SeedBLAST, its current performance is com-

parable with BLAST running with low threshold for hot

spots. We hope that this result can be improved if more ad-

vanced methods for construction of multiple seeds are used,

and longer seeds (i.e., of length > 5) are included. The re-

maining goal is to develop a method of seed construction

that would keep sensitivity high and improve selectivity. That

would eventually reduce the running time and memory re-

quirements for greater seed lengths.

Protein homology search requires unavoidably storing a

large dictionary in memory. Hence it seems to be worth pur-

suing ideas from [44], where a novel method of compres-

sion, based on wavelets, was proposed for dictionaries of

words. Another possible improvement could be integration

of the cache-conscious hashing DFA to improve efficiency

of page-swapping, as described in [45]. However, we would

like to recall here that our overall goal of investigating the

seed-based hot spot search was to reduce the need for large

information storage by choosing only those hits that seem im-

portant.

In case of CTX-PSI BLAST, there also remains a room for

improvements. First, by now we did not apply the contextual

model to the hot spot search. We believe that this extension

could yield a further increase of sensitivity. Second, the use

of reduced contextual substitution tables (see [36]) may re-

duce the complexity, while keeping sensitivity and specificity

on the high level.

Finally, a possible continuation is to combine both im-

provements, namely application of seeds in hot spot search

with the contextual extension of alignment procedure. As in-

teresting question is whether this would bring additional in-

crease of accuracy compared to joint but independent appli-

cation of both tools, SeedBLAST and CTX-PSI BLAST.
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