PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

G-PAS 2.0 - an improved version of protein alignment tool with an efficient backtracking routine on multiple GPUs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several highly efficient alignment tools have been released over the past few years, including those taking advantage of GPUs (Graphics Processing Units). G-PAS (GPU-based Pairwise Alignment Software) was one of them, however, with a couple of interesting features that made it unique. Nevertheless, in order to adapt it to a new computational architecture some changes had to be introduced. In this paper we present G-PAS 2.0 - a new version of the software for performing high-throughput alignment. Results show, that the new version is faster nearly by a fourth on the same hardware, reaching over 20 GCUPS (Giga Cell Updates Per Second).
Rocznik
Strony
491--494
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
autor
autor
  • Institute of Computing Science, Poznań University of Technology, 3 Piotrowo St., 60-965 Poznań, Poland
Bibliografia
  • [1] M. Ciznicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K. Napierala, and J. Palczynski, “Efficient isosurface extraction using marching tetrahedra and histogram pyramids on multiple GPUs”, Lecture Notes in Computer Science 7204, 343-352 (2012).
  • [2] M. Blazewicz, S.R. Brandt, M. Kierzynka, K. Kurowski, B. Ludwiczak, J. Tao, and J. Weglarz, “CaKernel - a parallel application programming framework for heterogenous computing architectures”, Scientific Programming 19 (4), 185-197 (2011).
  • [3] W. Jendernalik, J. Jakusz, G. Blakiewicz, R. Piotrowski, and S. Szczepanski, “CMOS realisation of analogue processor for early vision processing”, Bull. Pol. Ac.: Tech. 59 (2), 141-147 (2011).
  • [4] L. Ligowski and W. Rudnicki, “An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases”, IPDPS doi:10.1109/IPDPS.2009.5160931 (2009).
  • [5] Y. Liu, D.L. Maskell and B. Schmidt, “CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDAenabled GPUs based on SIMT and virtualized SIMD abstractions”, BMC Research Notes 3, 93 (2010).
  • [6] S.A. Manavski and G. Valle, “CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment”, BMC Bioinformatics 9 (2), S10 (2008).
  • [7] L. Ligowski, W.R. Rudnicki, Y. Liu, and B. Schmidt, “Accurate scanning of sequence databases with the Smith-Waterman algorithm”, GPU Computing Gems, Emerald Edition 1, 155-157 (2011).
  • [8] J. Blazewicz, W. Frohmberg, M. Kierzynka, and P. Wojciechowski, “G-MSA - A GPU-based, fast and accurate algorithm for multiple sequence alignment”, J. Paralleland Distributed Computing, doi:10.1016/j.jpdc.2012.04.004 (2012).
  • [9] K. Kwarciak and P. Formanowicz, “A greedy algorithm for the DNA sequencing by hybridization with positive and negative errors and information about repetitions” Bull. Pol. Ac.: Tech. 59 (1), 111-115 (2011).
  • [10] J. Blazewicz, P. Formanowicz, F. Guinand, M. Kasprzak, “A heuristic managing errors for DNA sequencing”, Bioinformatics 18, 652-660 (2002).
  • [11] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, and P. Wojciechowski, “Protein alignment algorithms with an efficient backtracking routine on multiple GPUs”, BMC Bioinformatics 12, 181 (2011).
  • [12] S.B. Needleman and C.D.Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, J. Mol. Biol. 48 (3), 443-53 (1970).
  • [13] T.F. Smith and M.S. Waterman, “Identification of Common Molecular Subsequences”, J. Molecular Biology 147, 195-97 (1981).
  • [14] O. Gotoh, “An improved algorithm for matching biological sequences”, J. Molecular Biology 162, 705-708 (1981).
  • [15] K.-M. Chao, W. R. Pearson, and W. Miller, “Aligning two sequences within a specified diagonal band”, Comput. Appl.Biosci. 8 (5), 481-487 (1992).
  • [16] M. Gribskov, A.D. McLachlan, and D. Eisenberg, “Profile analysis: detection of distantly related proteins”, PNAS 84, 4355-4358 (1987).
  • [17] M. Gribskov, R. Luthy, and D. Eisenberg, “Profile analysis”, Methods in Enzymology 183, 146-159 (1990).
  • [18] M.S. Waterman, “Sequence alignments in the neighborhood of the optimum with general application to dynamic programming”, PNAS 80, 3123-3124 (1983).
  • [19] M.S. Waterman and T.H. Byers, “A dynamic programming algorithm to find all solutions in a neighborhood of the optimum”, Math. Biosci. 77, 179-188 (1985).
  • [20] D. Naor and D. Burtlag, “On suboptimal alignment of biological sequences”, Proc. 4th Annual Symposium on CombinatorialPattern Matching 1, 179-196 (1993).
  • [21] M. Zuker, “Suboptimal sequence alignment in molecular biology, alignment with error analysis”, J. Mol. Biol. 221, 403-420 (1991).
  • [22] M. Vingron and P. Argos, “Determination of reliable regionsin protein sequence alignments”, Protein Engin. 7, 565-569 (1990).
  • [23] A.J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimal decoding algorithm”, IEEE Trans. Inf.Theory IT-13, 260-269 (1967).
  • [24] D. Zhang, “An implementation of Viterbi algorithm on GPU”, First Int. Conf. on Information Science and Engineering 1, CD-ROM (2009).
  • [25] Z. Du, Z. Yin and D.A. Bader, “A tile-based parallel Viterbi algorithm for biological sequence alignment on GPU with CUDA”, Ninth IEEE Int. Workshop on High Performance ComputationalBiology Atlanta, GA 1, CD-ROM (2010).
  • [26] E.W. Myers and W. Miller, “Optimal alignments in linear space”, Comput. Appl. Biosci. 4 (1), 11-17 (1988).
  • [27] R.L. Graham, “Bounds on multiprocessing timing anomalies”, SIAM J. Appl. Math. 17 (2), 416-429 (1969).
  • [28] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Handbook on Scheduling: From Theory to Applications, Springer, Berlin, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0096-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.