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Abstract. Functional magnetic resonance imaging (fMRI) data are acquired as a natively complex data set, however for various reasons

the phase data is typically discarded. Over the past few years, interest in incorporating the phase information into the analyses has been

growing and new methods for modeling and processing the data have been developed. In this paper, we provide an overview of approaches

to understand the complex nature of fMRI data and to work with the utilizing the full information, both the magnitude and the phase. We

discuss the challenges inherent in trying to utilize the phase data, and provide a selective review with emphasis on work in our group for

developing biophysical models, preprocessing methods, and statistical analysis of the fully-complex data. Of special emphasis are the use of

data-driven approaches, which are particularly useful as they enable us to identify interesting patterns in the complex-valued data without

making strong assumptions about how these changes evolve over time, something which is challenging for magnitude data and even more

so for the complex data. Finally, we provide our view of the current state of the art in this area and make suggestions for what is needed to

make efficient use of the fully-complex fMRI data.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a nonin-

vasive, powerful tool that has been utilized in both research

and clinical arenas since the early 1990s [1] and has provid-

ed valuable insights to the understanding of the human brain

function. FMRI has enabled researchers to directly study the

temporal and spatial changes in the brain as a function of var-

ious stimuli. Because it relies on the detection of small inten-

sity changes over time, fMRI poses significant challenges for

data analysis techniques. FMRI data is natively complex, and

thus there is both magnitude and phase information available.

To date, most fMRI analysis techniques to date have discarded

the phase of the fMRI data. However, the phase information

may be quite valuable for the analysis of the natively com-

plex fMRI data. A number of direct benefits have been noted

in the use of phase fMRI data as (i). In assessing functional

connectivity, phase is more informative than magnitude da-

ta [2]; (ii) phase enables better detection of artifacts in both

the magnitude and phase data which can then be effectively

excluded from further analysis [3, 4]; (iii) the sensitivity and

specificity of estimations increase as we have shown with a

number of examples as part of our NSF-funded work [5–10].

That is our goal in this paper, to provide a review of various

approaches for using the phase information along with the

magnitude in fMRI data and to demonstrate the advantages.

We first present some preliminaries on the fMRI signal and

statistical properties. Next we discuss approaches to under-

stand the underlying biophysics of the phase signal as well as

approaches to preprocess and de-noise the data. The remain-

der of this article is devoted to model-based and data-driven

analysis approaches to analyze the complex-valued fMRI data.

Traditional model-based analysis approaches – such as linear

regression – are robust, yet often too rigid to capture the rich-

ness of the human brain activation, in addition their limitation

is more evident for incorporating phase into the analyses as

still little is known about the nature of fMRI phase data. In-

dependent component analysis (ICA), on the other hand, is a

data-driven approach that provides a more flexible framework

for the analysis of fMRI data. ICA facilitates the analysis of

fMRI data in its complex form by eliminating the need to

explicitly model the phase behavior. In addition, ICA is able

to separate artifacts from signal more readily as well as cap-

ture signal from the phase which may be less predictable that

that of the magnitude data. There are also a number of is-

sues that require special consideration in the preprocessing

and visualization of the complex fMRI data and we address

those issues as well before discussing the two main analysis

approaches.

1.1. FMRI data acquisition and the complex nature of

FMRI data. Most fMRI studies involve a neurobehavioral

paradigm in which a participant is exposed to sensory stim-

uli and asked to perform a set of mental and/or motor tasks.

A given volume is then collected through slices within a given

repetition time, which is usually on the order of a few sec-

onds. The acquired data set includes a brain volume movie

with a temporal resolution specified by the time of repetition.

The MRI signal is acquired as a quadrature signal using two
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Fig. 1. Diagram of MRI acquisition where M(r, t) represents the magnetization at spatial position r and time t, and ω represents the net

phase

or more orthogonal detectors as shown in Fig. 1. The signal

that is acquired in the complex frequency space (k-space) is

inverse Fourier transformed into the complex image space.

This complex-valued fMRI signal change has been shown to

contain physiologic in formation [11]. In spite of the presence

of useful information in phase, it is usually discarded. Previ-

ous studies have reported task-related phase changes [11–14].

Several approaches for modeling the phase have been pro-

posed [15–17]. Processing complex-valued fMRI data using

independent component analysis was also proposed in [8].

Previous work has focused on filtering voxels with large phase

changes [13, 18–20] based upon models that show that phase

changes arise only from large non-randomly-oriented blood

vessels. More recent studies from our group and others pro-

vide evidence that the randomly oriented microvasculature can

also produce a non-zero BOLD-related phase change [20, 21]

and we and others have also showed empirical evidence of

changes in the phase which correspond to regions expected to

be involved in the task [6]. These and much other work provid-

ing compelling evidence that the phase information contains

useful physiologic information.

2. Preliminaries

Besides medical domain such as magnetic resonance imag-

ing, complex-valued data are an integral part of many sci-

ence and engineering problems, including those in commu-

nications, radar, geophysics, oceanography, electromagnetics,

and optics, among others. The complex domain provides both

a convenient representation for these signals and a natural way

to capture the physical characteristics of these signals. Hence,

working completely in the complex domain leads to the most

efficient processing of these signals. The complex domain,

however, also presents a number of challenges in derivation

and analysis of the methods, and as a result, traditionally,

the vast majority of algorithms developed for their processing

have taken “engineering” shortcuts, thus failing to fully ex-

ploit the potential of complex-domain processing. The most

common one among those shortcuts has been assuming the

circularity of the signal, an assumption that discards the in-

formation conveyed by the relationship of real and imaginary

parts of the signal, or equivalently by the phase, which is, one

of the main reasons one would want to work in the complex

domain, i.e., take into account such information in a compact

and effective way while using the power of complex calculus.

There have been important advances in this area within

the last decade that clearly demonstrate that noncircularity is

an intrinsic characteristic of many signals of practical interest,

and when taken into account, the methods developed for their

processing may provide significant performance gains [22–

26]. The two key fundamental advances in this context have

first been the development of methods that allow the use of

complete statistical information without assuming circularity.

What has greatly helped in this development is the develop-

ment of a complete framework for optimization [22, 27] that

is based on Wirtinger calculus [28].

2.1. Statistics. In almost all methods developed prior to 2000

for the complex domain, the circularity assumption has been

invoked either explicitly, or implicitly, by simply using only

partial statistical information in the development. For exam-

ple when using second-order statistics, only the correlation

information, E{xxH}, is used ignoring the pseudo (comple-

mentary) correlation given by E{xxT }, written for a random

vector x. A second-order circular (or improper) random vec-

tor is one for which E{xxT } = 0. When taking full statis-

tical information into account, circularity is defined in terms

of the probability density function (pdf) such that a random

variable x is circular if x and xejθ have the same pdf, i.e., the
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pdf is rotation invariant [29]. In this case, the phase is non-

informative and the pdf is a function of only the magnitude,

p(x) = g(|x|) where g : R 7→ R. Data in many applications

such as biomedical data analysis, array processing, and com-

munications are however noncircular in nature, see e.g., [22,

26, 30, 31], hence taking their potential noncircularity into

account is important for achieving the best performance.

In Fig. 2(a), we show the scatter plot of a motor com-

ponent estimated using ICA of functional MRI data [3]. The

paradigm used in the collection of the data is a simple motor

task with a box-car type time-course, i.e., the stimulus has

periodic on and off periods. As can be observed in the figure,

the distribution of the given fMRI motor component has a

highly noncircular distribution. In Fig. 2(b) and (c), we show

the spatial map for the same component using a Mahalanobis

Z-score threshold, which we define in Section 0. This distri-

bution is typical as most often the signal power is optimized

to be mainly in one channel [32, 33] but as we noted, the

signal component of the BOLD measurement appears in both

the real and imaginary channels resulting in complex-valued

fMRI data.

Hence, in the processing and analysis of fMRI data in its

native complex form, it is important to account for noncircu-

larity of the distribution. Wirtinger calculus, which we explain

next allows derivation of algorithms that can fully take this

property into account by making optimization much easier so

that the common simplifying assumptions of circularity does

not need to be invoked.

2.2. Optimization. The most important step in the deriva-

tion of algorithms, one has to compute gradient and Hessians

of cost functions, such as a quadratic form or a likelihood

function. Since cost functions are real valued, i.e., are scalar

quantities in the complex vector space, they are not analytic,

and hence not differentiable in a given open set. To overcome

this basic limitation, a number of approaches have been tra-

ditionally adopted in the signal processing literature the most

common of which is the evaluation of separate derivatives

with respect to the real and complex parts of a given func-

tion.

The framework based on Wirtinger calculus [22, 28] – also

called the CR calculus [27] – provides a simple and straight-

forward approach to performing derivatives in the complex

plane, in particular for the important case we mention above,

for non-analytic functions. More importantly, it allows one to

perform all the derivations and the analyses in the complex

domain without having to consider the real and imaginary

parts separately. Hence, all computations can be carried out

in a manner very similar to the real-valued case, and hence the

derivations that use Wirtinger calculus can be directly adapted

to the real case.

The main idea behind Wirtinger calculus is based on the

definition of a more relaxed condition of differentiability for

the complex domain as opposed to the classical definition

whose main objective is to make sure that the derivative cal-

culations parallel those in the real domain. Wirtinger calcu-

lus [28] relaxes the traditional definition of differentiability

and only requires that f(z) be differentiable when expressed

as a function f : R2 → R2. Such a function is called real-

differentiable. Hence, if u(zr, zi) and v(zr, zi) have contin-

uous partial derivatives with respect zr to and zi, f is real-

differentiable. For such a function, we can write

∂f

∂z
=

1

2

(
∂f

∂zr

− j
∂f

∂zi

)
and

∂f

∂z∗
=

1

2

(
∂f

∂zr

+ j
∂f

∂zi

)

(1)

which can be formally implemented by regarding f as a bi-

variate function f(z, z∗) and treating z and z∗ as indepen-

dent variables. That is, when applying ∂f/∂z, we take the

derivative with respect to z, while formally treating z∗ as a

constant. Similarly, ∂f/∂z∗ yields the derivative with respect

to z∗, formally regarding z as a constant. Thus, there is no

need to develop new differentiation rules. This was shown

in [34] in 1983 without a specific reference to Wirtinger’s

earlier work [28]. If f is analytic, then the usual complex

derivative ∂f/∂z and in (2) coincide. Hence, Wirtinger cal-

culus contains standard complex calculus as a special case.

Fig. 2. a) Scatter plot of the average voxel values of the motor component estimated using ICA from 16 subjects. (b) Magnitude and (c) phase

spatial maps using Mahalanobis Z-score thresholding; only voxels with are shown
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The same approach, i.e., treating the variable and its com-

plex conjugate as independent variables, can be used when

taking derivatives of functions of matrix variables as well

so that expressions given for real-valued matrix derivatives

can be directly used. A good reference for real-valued matrix

derivatives is [35] and a number of complex-valued matrix

derivatives are discussed in detail in [11]. In [22, 27, 36], the

complete framework for vector and matrix optimization us-

ing Wirtinger calculus is presented by using the gradient and

Hessian relationships given in [37] but by keeping the whole

development in the complex plane and in the original problem

dimension CN rather than doubling the dimension as in [37].

Hence, using Wirtinger calculus, all calculations can be

carried out in a manner similar to real-valued calculus while

keeping all the computations in the complex domain. It is also

shown that the simplifying and unrealistic assumption of non-

circularity can be avoided in both the algorithm development

and in the analyses of the algorithms when one uses Wirtinger

calculus, see e.g., [5, 36, 38–44].

3. Biophysical models

One powerful approach for understanding the underlying fM-

RI signal is to use biophysical modeling. To highlight the

scope of what is possible, we present two models for calcu-

lating the complex BOLD signal. The first is a microscopic

model that calculates the BOLD signal based on the detailed

geometry of the micro-vessels, spatial distribution of suscep-

tibility, and diffusion. The second is a macroscopic model that

is defined at a resolution of the fMRI experiment and can be

used in the inverse problem of combining magnitude/phase

BOLD data to improve activation localization and detection.

3.1. Microscopic model. The microscopic model, we present

now, follows the description presented in works [45–47]. A

two-compartment model, consisting of the extravascular and

the intravascular contribution to the BOLD signal is typically

considered. Briefly it consists of a) defining a spatial sus-

ceptibility distribution χ(r) = χm(r)V (r), as a product of

the assumed network geometry V (r) and the macroscopically

varying susceptibility χm(r), b) calculating the magnetic field

distribution Bz(r) from χ(r) using a 3D fast Fourier trans-

form (3DFFT) method, and c) calculating the BOLD signal

from Bz(r) by appropriate averaging over the voxel and tak-

ing into account diffusion. Bz(k) = B0(1/3− k2
z/k2)χ(k) is

the 3DFFT of the magnetic field.

Figure 3a shows the geometry which consists of a ran-

dom distribution of microvessels (infinite cylinders) with a

radius = 2.5 um with blood volume fraction = 0.04. Figure 3b

is a slice from the corresponding ∆B0(r) calculated from

the algorithm proposed in [48]) for a Hct = 0.4, Y = 0.5,

∆χdo = 0.27 ppm x4π (units in milliTesla). Assuming a dif-

fusion coefficient = 1 × 10−9 m2/s we compute the signal

attenuation profile shown in Fig. 3c.

Fig. 3. Example simulation including diffusion: (a) geometry, (b) slice through simulation showing field changes, (c/d) signal decay at

different field strengths
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3.2. Macroscopic model. We can also use a macroscopic

model which summarizes the results of the microscopic mod-

el at the level of fMRI voxel resolution. It reflects the exper-

imentally observed patterns of magnitude and phase BOLD

signals. We follow the methods developed by Yablonskiy and

Haacke [49] and Marques and Bowtell [46], and a model for

predicting phase change previously discussed by us [21].

Macroscopic models can be defined for a) random distri-

bution of microvessels (capillaries), b) Oriented distribution

of larger vessels (venules), and c) a single large vessel. As

discussed before, the extravascular and the intravascular sig-

nal can be considered as separate compartments. Although

both magnitude and phase effects depend on the underlying

vascular geometry and the susceptibility change, they primar-

ily depend on different magnetic field characteristics. To first

order, the magnitude attenuation depends on the intra-voxel

magnetic field inhomogeneity and the phase depends on the

mean magnetic field at the voxel. The magnitude and phase

changes have different models as described below.

Extravascular signal. SE = S0e
−R∗

2,ETE e−iφ, where

R∗

2,E = R2,GM + aV bχc
m. V is the voxel volume and χm(r)

is the macroscopic susceptibility distribution. The parame-

ters a, b, c are parameters obtained from numerical simula-

tions with the microscopic model for different vessel dimen-

sions, blood volume fraction, and vessel radius. The simula-

tion work of Marques and Bowtell [46] has shown that a real-

istic model and the infinite cylinder model give similar values

for a, b, c. The values for the realistic model were a = 2.73,

b = 1.13, and c = 1.29. The phase φ = γBmTE is calculated

from macroscopic magnetic field Bm, where Bm is calculated

from the macroscopic susceptibility distribution χm(r) by the

3DFFT method described earlier. This method was described

earlier in Feng [21] and Fig. 4 shows an example.

Intravascular signal (case 1). Randomly distributed

cylinders with blood volume fraction = f1. SI =
S1I(t)e−R∗

2,ITE , where R∗

2,I = a1V
b1χm

c1 + a2V
b2χm

c2 ,

I(t) = (1/2)
π∫

0

sin θeik(2 cos2 θ−1)tdθ, and k = (2/3)πγB)χ.

Marques and Bowtell [46] estimate a1 = 3.5, b1 = 1.0,

c1 = 1.2, a2 = 40.0, b2 = −0.4, and c2 = 1.2.

Intravascular signal (case 2). A single cylinder with

blood volume fraction = f2. The field inside the cylin-

der is orientation dependent but is spatially constant. SL =
S0e

−R2,BTEe−iφL , where φL = γB0(χ/6)(3 cos2 θ − 1)TE .

The total signal is given by ST = (1 − f1 − f2)SE +
f1SI + f2SL. The magnitude signal in each compartment

has the form S = S0e
−R∗

2
TE , and for small changes in R∗

2,

∆S/S = −TE∆R∗

2. ∆R∗

2 can be related to changes in χm by

models presented earlier. The magnitude of the blood/tissue

susceptibility difference is modeled by χ = Hct(1−Y )χdHb,

where Hct = 0.4, χdHb = 2.2 ppm (MKS units). This gives

χ = 0.36 ppm in the resting state with an oxygenation frac-

tion Y = 0.6 and χ = 0.18 ppm in the active state with

Y = 0.8. These numbers imply that the change in χ between

the resting state and the activated state is estimated to be

∆χ = 0.18 ppm.

3.3. Intravascular effect. Here we estimate the maximum

phase change expected in a single large vessel to the phase

change calculated in a capillary bed under some reasonable

parameter assumptions. If the cylinder is parallel to the main

field φL = γB0χTE/3 = 15.4πTE, for B0 = 3T and

χ = 0.18 ppm. The phase in the total signal will depend

of the blood volume fraction f , but as can be seen it can

become as large as π. Menon et al. have suggested that large

phase changes can be used to detect and exclude large vessel

artifacts [13]. When an analysis is done in combination with

a physical model we can use the phase information to either

enhance an activated region or suppress a false activation.

3.4. Phase changes also occur in parenchymal regions con-

taining only small vessels. We assume that the macroscopic

susceptibility change is 3D Gaussian.

∆χm(r) = Ck exp

(
−

1

2

[
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

])
, (2)

where Ck is a scaling constant. We choose the value of

Ck based on parameter values from the literature. We de-

fine ∆χ′ as the susceptibility difference between complete-

ly deoxygenated and completely oxygenated red blood cells

(0.264×4π ppm in MKS units [50] with a hematocrit level of

0.4 [51], and oxygenation level Y is the fractional oxygena-

tion in the red cells with ∆Ycap = 0.08 [11, 12]. Then for

a blood volume fraction f of 0.05 and ignoring the cerebral

blood volume change, Ck = −f ·∆Ycap · 4π ·∆χ′ ·Hct, Ck

is approximately −5.3e−9.

Figure 4 shows the simulation results of magnetic

field/phase change corresponding to 3D Gaussian volume-

averaged susceptibility/magnetization change for the cases of

σx : σy : σz = 1 : 1 : 1, 1:1:2, 2:2:1 and 2:2:1, Eq. (1),

rotated counter-clockwise around the x-axis by π/3, respec-

tively. For the value of Ck selected above, the resulting max-

imum simulated phase change for all of these configurations

is in the order of 1◦. Depending on the spatial distribution of

the susceptibility changes and the angle of the cut plane of

the magnetic field change, the resulting phase shows patterns

of dominantly positive, dominantly negative, or combinations

of positive and negative phase changes due to the volume-

averaged magnetization and demagnetization effects.
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Fig. 4. Simulation of phase change corresponding to 3D Gaussian volume-averaged susceptibility change for the cases of σx : σy : σz =

1 : 1 : 1, 1:1:2, 2:2:1 and 2:2:1 rotated counter-clockwise around the x-axis by π/3

3.5. Robustness to noise by using phase. A second simulat-

ed example is shown on how to fit the magnitude signal change

or determine how much to smooth. The problem can be ap-

proached by finding an optimal smoothing of the magnitude

response constrained by phase. The optimization cannot be

performed without the phase information. Given a magnitude

change we can calculate a signal proportional to phase change.

Let fm(r) and fφ(r) be the magnitude and phase change im-

ages. The error functions for magnitude and phase are written

as E1 = ||χ(r)−fm(r)||2, and E2 = S2||αF (χ(r)−fφ(r)||2.

We now seek a function χ(r) and α, such that E1is approxi-

mately equal to E2 while E1 + E2 is a minimum. The addi-

tional phase information enables us to find a smooth solution

for χ(r). The results of the proposed fitting are shown in

Fig. 5 where we transform a noisy image magnitude/phase

image pair (middle) to a pair which has error relative to the

ground truth (left) reduced by a factor of 20 (right). The joint

constraint allows us to determine the optimal smoothing and

fit the magnitude data without ground truth knowledge.

Fig. 5. Joint magnitude/phase fit to reduce noise
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Fig. 6. Simultaneous fit for one subject

3.6. Fitting the model to real fMRI data. The macroscopic

model suggests that both magnitude and phase of the BOLD

signal depend on the macroscopic susceptibility distribution

χm(r). The magnitude change depends χm(r) on through

models for R∗

2 and the phase through the 3DFFT model or the

separate case of large vessels. We propose to estimate χm(r)
by minimizing the goodness-of-fit function χ2 used for fitting

the magnitude and phase change models as defined by:

χ2 =

∫

r

((
∆S(r)

S(r)
−

∆Ŝ(r)

Ŝ(r)

)
/σds(r)

)2

dr

+

∫

r

(
∆φ(r) − ∆φ̂(r)

σdφ(r)

)2

dr,

where ∆Ŝ(r)/Ŝ(r), ∆φ̂(r) are theoretical scaled magnitude

change and phase change, respectively, and ∆S(r)/S(r),
∆φ(r) are the observed magnitude change data and phase

change data; σds(r) and σdφ(r) are the standard deviation of

magnitude and phase change at each voxel. The integration

is over the volume of activation (VOA). Figure 6 shows the

simultaneous fitting results for one subject showing data as

well as the fits for magnitude and phase.

Experiments were performed on a 3T Siemens TRIO TIM

system using a standard Siemens gradient-echo EPI sequence.

We used a Field-of-View (FOV) = 240 mm, Slice thickness =

3.5 mm, Slice Gap = 1 mm, 32 slices, Matrix size = 64×64,

TE = 29 ms, and TR = 2 s. The fMRI experiment used a

block design with alternating 30s finger tapping. The total

experiment time was 5.5 minutes.

Data were preprocessed using the SPM software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm/5/). Complex

images were corrected by dividing each time point by the first

time point, and then recalculating the phase images. Further

phase unwrapping was not required. Data were motion cor-

rected [51], spatially smoothed with a 10 mm3 full width at

half-maximum Gaussian kernel, and spatially normalized in-

to the Montreal Neurological Institute space. Activation maps

were computed using the multiple regression framework with-

in SPM5 in which regressors are created from the stimulus

onset times and convolved with a standard hemodynamic re-

sponse function. A contrast was created for each individu-

al subject for finger tapping versus rest. A group analysis

was performed using the activation maps from each individ-

ual subjects and entering them into voxelwise one-sample t-

tests.

Fig. 7. Magnitude (M) and phase (P) changes (t-values) for representative subject (left) and simulated results (right). The color bars for the

subjects show the t-value ranges. The colorbar for the simulated results indicate the relative strength of susceptibility and phase change
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Fig. 8. Phase and magnitude change time courses

In Fig. 7, the left panel show the magnitude and phase

change of the results (thresholded at t = 8 (p < 1 × 10−13))

for subject A (for a complete reporting of results see [21]. The

panel on the right shows the susceptibility change and phase

change of simulated results. Here, we assume the magnitude

change is approximately linear to the volume-averaged suscep-

tibility change. The highest magnitude change was observed

in the motor cortex. Further observation of Fig. 7 indicates

the peak of the magnitude change is not located where the

phase change peaks; instead, it is closer to the sign change

of the phase change (the minimum absolute phase value).

The simulations to match the observed fMRI phase/magnitude

changes began by approximating the observed phase change

pattern to that obtained by Gaussian distributions, and cal-

culating the susceptibility distribution by an inverse calcu-

lation [53]. Then a matched phase distribution was calcu-

lated by a forward model calculation. The results show that

our model can closely match patterns observed experimen-

tally.

Figure 8 shows the phase and magnitude change time

courses from a single voxel (the one showing maximal phase

change) for a representative subject. The time evolutions of

the phase and magnitude change are similar to each oth-

er, suggesting that both changes originate from the same

source, the deoxyhemoglobin-induced susceptibility change.

The measured voxel phase change (unsmoothed) is around 1◦,

on the same order of the simulation results as shown in Fig. 4.

They are both on the same order of a measured voxel phase

change (no large vessel present) 0.028 radians or 1.6◦ in [13].

4. Preprocessing and visualization

4.1. Motion correction. Existing methods for motion cor-

rection and spatial normalization can be modified to work for

an analysis including the phase. A straightforward approach

is to simply use the magnitude image to compute the parame-

ters for both motion correction and for spatial normalization

and then to apply the computed transformation to the phase

images. This appears to work quite well although a poten-

tial down side is it does not consider the possibility that the

phase data may contain useful information about movement

or structure in general. As a simple extension one can try

to incorporate a cost function which uses both the magnitude

and the phase. A typical least-squares cost function for motion

correction is given below, CF =
∑

i=2:N [Mi − M1]
2 where

Mi is the i-th time point image. It is possible to implement a

complex motion correction approach by realigning the images

using the information present in the complex image (obtained

by combining the magnitude and phase data). A proposed cost

function for the complex algorithm is given below,

Cost =
∑

(

i = 2 : N)

[
(Ri − R1)

2

1/(Norm(R1))
+

(Ii − I1)
2

1/(Norm(I1))

]
,

where is the real part of the time point and is the imaginary

part of the time point. We applied this approach to fMRI data

from several subjects performing a motor tapping task. The re-

sults using the magnitude only cost function and the complex-

valued cost function are similar but not identical. The resulting

T-maps for both magnitude and phase show less activity at the
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edges of the brain (40% smaller T-values on average) when

performing motion correction using the complex-valued data

suggesting that the complex motion correction algorithm does

a better job in handling the motion. Overall the patterns ob-

served pre and post motion correction are highly similar with

pre/post motion corrected maps spatially correlated at 0.97

for phase and 0.98 for magnitude. The significance is slight-

ly higher for the unified approach compared to an approach

in which we used only the magnitude data and applied the

parameter estimates to the phase data. The phase for the uni-

fied approach shows increases from T = 18.8 to T = 18.9 and

magnitude changed from T = 21.3 to T = 21.4. The T-value

improvements are encouraging, but relatively modest.

4.2. Spatial normalization. Just as in motion correction we

can use two approaches, one using the magnitude information

and pulling the phase information along, and the other us-

ing both magnitude and phase to computed the normalization

parameters. For the latter the images can be spatially normal-

ized to the Montreal Neurological Institute (MNI) template

and we use the cost function in [2] to derive the nonlinear pa-

rameter estimates. A study specific template (including both

real and imaginary images) was created using an initial reg-

istration based upon the magnitude data and then applying

the parameters to the real and imaginary data and averaging

across subjects to create a template that has real and imagi-

nary images. The data can then be renormalized to this group

template using the cost function in [2] to provide a more

accurate estimate. We tested this approach on a group of 17

subjects. We converted the data to magnitude and phase and a

statistical analysis was performed on the magnitude and phase

data independently. Results were overall quite similar to the

magnitude-only approach, but again the T-maps were slightly

higher for the unified approach. Results are thus encouraging,

but more work is needed.

4.3. Preprocessing and visualization.

Spatial smoothing. Data are typically spatially smoothed

with e.g., a Gaussian kernel to improve the contrast-to-noise

ratio [6, 8]. Smoothing is useful for group data as it both

reduces the amount of high-frequency spatial noise as well

as desensitizes the images to variability of functional acti-

vation and anatomy among subjects. We analyze both un-

smoothed and smoothed data with different kernels to evalu-

ate the impact of smoothing upon the analysis. There is likely

room for improvement in smoothing schemes to move beyond

Gaussian, e.g. wavelet smoothing [54]. In the complex-domain

there is also the possibility of performing natively complex

smoothing, for example one could use a modified complex

anisotropic diffusion filtering [55]. However, this is an appli-

cation area which has not yet been fully evaluated.

Phase denoising. A physiologically motivated denoising

method is given in [4] and uses the phase to identify noisy

voxels and eliminates them or introduces a weighting scheme

depending on their noise level. The quality map phase de-

noising (QMPD) uses gradient information to determine the

noisy voxels and eliminates them from further analysis [4]. It

is shown that the voxels identified as noisy are in areas that

are known to suffer from susceptibility artifacts, such as the

area from the orbitofrontal cortex due to air in the sinuses.

The final component of this method includes an important

smoothing step that if done before eliminating noisy voxels

can spread their detrimental effects to their surroundings. It

is also noted that the ICA results obtained with the QMPD

method provides higher Z-scores (11.87 versus 10.83) and a

larger number of active voxels (1589 versus 1238) as com-

pared to those obtained with the MTEE method [4].

Phase correction for ICA group studies. We note the

importance of phase correction for the analysis results for

groups of subjects as a simple rotation of the estimated dis-

tribution of the activation map can have serious detrimental

effects in the group results when we compute averages. There

have been two approaches proposed to address this problem.

If information on the distribution of the original fMRI data is

available, then this prior information can be used for selecting

the appropriate nonlinearity in the ICA algorithm as shown

in Fig. 9 (right) [38, 40, 43]. As shown in [38], a number of

trigonometric functions and their hyperbolic counterparts can

be effectively used for achieving ICA, and for the fMRI data

we use where the signal is maximized in the real part, the

function shown in Fig. 9 (right) provides a perfect match and

eliminates the phase rotation in the estimated components as

we show in [56].

Fig. 9. Complex scatter plot of an estimated motor task related source before (left) and after (middle) applying the PCA-based phase

correction scheme. (right) form of pdf implied by the score function
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A second approach uses direct manipulation of the data to

correct for phase rotation in the estimated fMRI components:

1) Find rotation angle θ that maximizes: argmazθE[(Mŝ)2],
2) Resolve 180◦ phase ambiguity: argmaxθE[(Mŝ)3] where

and M = [cos θ sin θ; − ∈ θ cos θ] and ŝk = [ŝk.re, ŝk,im]T .

Figure 9 shows the scatter plot of the real and imaginary data

of an estimated source before and after the PCA based phase

correction. In Fig. 13, we show group ICA results for 20 sub-

jects performing a motor tapping task.

5. Model-based analysis of complex fMRI data

5.1. fMRI data analysis. We now discuss statistical analysis

using a model-based approach. Typically, the acquired fMRI

data are first preprocessed, for example by the 1) correction of

slices for the slight time shift within each volume, 2) registra-

tion to correct for subject motion during the scan, and 3) spa-

tial normalization to enable comparisons among subjects and

neuro-anatomical labeling, and 4) smoothing. Following the

preprocessing step, the data are analyzed to determine the

voxels with significant temporal signal change, which are then

super-thresholded and overlaid on an anatomical image. The

volume data is then organized into a matrix X such that each

row is formed by concatenation of the slices at a given time

instant resulting in the T × V matrix shown in Fig. 10.

5.2. General linear model. The most widely used method

for the analysis of fMRI data is linear regression using the

general linear model (GLM) [83]. As shown in Fig. 10 along

with an example time course (regressor) for a simple on-off

paradigm, X is the matrix of input data, R is a design matrix,

and M is the matrix of activation maps. The time course is

correlated with the fMRI data to determine the voxels that

show activity related to the chosen time course. The goal is

find the matrix M , i.e., compute the regression coefficients

(entries of matrix M ) that are deemed to be active. An im-

portant limitation of this method is that the regressors rk that

form the matrix R need to be specified a priori.

Several methods for approaching the analysis of the phase

information within the GLM framework were proposed by

Rowe et al. [14–17, 57]. The general complex fMRI model

proposed by Rowe is given in [15]:

yt = (ρt cos θt + ηRt) + i(ρt sin θt + ηIt),

ρt = x′

tβ = β0 + β1x1t + · · · + βq1xq1t,

θt = u′γ = γ0 + γ1u1t + · · · + γq2tuq2t,

t = 1, . . . , n

where (ηRt, ηIt)
′ ∼ N(0, σ2I), x′

t is the t-th row of an

n × (q1 + 1) design matrix X for the magnitude, u′

t is the

t-th row of an n × (q1 + 1) design matrix U for the phase,

while β and γ are the regression coefficients for the magnitude

and phase.

Fig. 10. Application of GLM and ICA to fMRI data
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Rowe considers a number of cases for modeling the phase,

in [15] and [14], a task-related phase is considered, in [17] the

phase is modeled as an arbitrary value (and under this model,

i.e., uninformative phase, the model is shown to be equiva-

lent to magnitude only case), and finally in [16], a constant

value (identical at all time-points) has been used for model-

ing the phase. With the given linear model, the hypotheses

regarding task related magnitude and phase changes can be

evaluated on an individual complex-valued voxel-wise basis,

using maximum likelihood estimators.

5.3. GLM group analysis. Few studies have examined phase

data in a larger group of subjects for multiple types of fMRI

tasks, nor have studies examined phase changes due to event-

related stimuli. In recent work from our group, we evaluate

the correspondence between the magnitude and phase changes

at a group level in a block-design motor tapping task and in

an event-related auditory oddball task [6]. The results for both

block-design and event-related tasks indicate the presence of

task related information in the phase data with phase-only

and magnitude-only approaches showing signal changes in

the expected brain regions. Although there is more overall

activity detected with magnitude data, the phase-only analy-

sis also reveals activity in regions expected to be involved

in the task, some of which were not significantly activat-

ed in the magnitude-only analysis, suggesting that the phase

might provide some unique information. In addition, the phase

can potentially increase sensitivity within regions also show-

ing magnitude changes. The identification of regions which

1) show signal changes for magnitude data only, 2) show sig-

nal changes for phase data only, or 3) show signal changes for

both magnitude and phase data were of particular interest.

Figure 11 shows the magnitude change and phase change

of the results for motor tapping and auditory oddball. As ex-

pected the highest magnitude change for motor tapping was

observed in the left motor cortex and for the auditory odd-

ball highest change was in bilateral temporal lobe. Similarly,

maximal phase changes were also observed in motor cortex

for MT and in temporal lobe for AOD. The images in the

top-right and bottom-right panels of Fig. 1 are the RGB (R-

red, G-greed, B-blue) color maps for MT and AOD similar

to the display provided in [15]. The areas in red are where

only significant magnitude signal changes were observed, the

ones in green are for significant phase-only signal changes

and the areas in blue are where both significant magnitude

and significant phase signal changes were observed. The re-

sulting signal change changes for phase and magnitude data

for both motor tapping and AOD were cluster thresholded to

correct for multiple comparisons at family wise error (FWE).

The color activation maps in Fig. 11 show the correspon-

dence between the magnitude and phase responses. The re-

gions of interest in each of these maps are labeled such that

red shows magnitude only areas, green shows phase only, and

the areas for magnitude and phase are shown by blue. Tapping

movement mainly activates regions in the motor cortex, hence

for the motor tapping paradigm it is expected to see peaks in

precentral gyrus. The results are encouraging and corroborate

with patterns observed in the ROI analysis. The presence of

these areas in phase only activation maps (without any mag-

nitude signal change) suggests that using the phase date in

fMRI may provide useful information beyond the magnitude

data.

Fig. 11. Whole brain analysis results
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Separate analyses of phase and magnitude fMRI data at

a group level for two different paradigms were analyzed. The

group statistical results show significant phase changes in both

block design and event related design. The presence of phase

activation in the regions expected to be activated by the task,

suggests that the information in the phase might help increase

the ability to isolate the task-related functional changes.

6. Data-driven analysis of complex fMRi data

6.1. Blind Source Separation (BSS) and Independent

Component Analysis (ICA). Data-driven methods are based

on a simple generative model and hence can minimize the

assumptions on the nature of the data. They have emerged

as promising alternatives to the traditional model-based ap-

proaches in many applications where the underlying dynamics

are hard to characterize. Blind source separation, in particu-

lar, has been a popular data-driven approach and an active

area of research. Most BSS formulations start with the linear

mixing model x = As with the possibility of an additive

noise term), where x is the mixture that is factorized into

latent variables through two matrices (a mixing matrix A and

a component (source) vector s where each entry correspond

to a source in random variable notation) and replaced by the

observation matrix X and component matrix Sin an imple-

mentation. For uniqueness of the decomposition (subject to

certain ambiguities), constraints are applied to the two matri-

ces such as sparsity, uncorrelatedness, or independence of the

components. ICA is a popular blind source separation tech-

nique that imposes the constraint of statistical independence

on the components, i.e., source distributions and hence can re-

cover the original sources by estimating a demixing matrix W

such that u = Wx subject to only a scaling and permutation

ambiguity. It has been successfully applied to numerous data

analysis problems in areas as diverse as biomedicine, commu-

nications, finance, geophysics, and remote sensing [22, 61].

To solve the source separation problem, different prop-

erties of source signals have been exploited including non-

Gaussianity, non-stationarity, and sample correlation – see

e.g. [58–63]. The most commonly used property among those

has been non-Gaussianity. The natural cost in this context

that leads to ICA is the mutual information among separated

components, which can be shown to be equivalent to maxi-

mum likelihood estimation, and to negentropy maximization

[40, 59, 61, 64] when we constrain the demixing matrix to be

orthogonal. In these approaches, one either estimates a para-

metric density model [61, 63, 65, 85] along with the demixing

matrix, or maximizes the information transferred in a network

of non-linear units [58, 67], or estimates the entropy using a

parametric or nonparametric approach [58, 63, 68, 69]. A

recent semi-parametric approach uses the maximum entropy

bound to estimate the entropy given the observations, and us-

es a numerical procedure thus resulting in accurate estimates

for the entropy [42]. We have showed that the method can

successfully approximate a wide class of source distributions

by selecting few measuring functions, and when incorporated

into ICA, the flexible density matching in this approach, ICA

by entropy bound minimization (ICA-EBM) provides a very

attractive trade-off between performance and computational

cost [42, 70]. As presented in [71, 72], one way to incor-

porate prior information to an ICA algorithm is by working

in a constrained optimization framework and directly adding

the constraints through Lagrange multipliers. ICA-EBM, on

the other hand, besides the use of such a direct constrained

approach allows easy incorporation of prior information in a

number of ways, in particular by selecting the best nonlinear-

ities to model the underlying source densities.

We have made considerable progress in the development

of data-driven algorithms for processing complex-valued fM-

RI data. Many of the approaches discussed in this paper are

available in two Matlab software tools, the Group ICA of

fMRI Toolbox (GIFT; http://mialab.mrn.org/software) and the

LibrarY of Complex Independent component analysis Algo-

rithms (LYCIA; http://mlsp.umbc.edu/lycis/lycia.html).

6.2. Complex ICA. When performing ICA in the complex

domain, all quantities are assumed to be complex and an im-

portant result in the complex case is that one can make use

of noncircularity to achieve source separation. Specifically,

when all the sources in the mixture are improper with distinct

circularity coefficients, we can achieve ICA through joint di-

agonalization of covariance and complementary covariance

matrices to achieve source separation as in the strongly un-

correlating transform (SUT) [73, 74]. For the real-valued case,

separation using second-order statistics can be achieved only

when the sources have sample-to-sample correlations.

Algorithms such as joint approximate diagonalization of

eigenmatrices (JADE) [75] explicitly calculate the higher-

order statistics, the cumulants in the case of JADE, and can be

directly used for ICA of complex-valued data. A recent exten-

sion for these algorithms [76] enables joint diagonalization of

matrices that can be Hermitian and/or complex symmetric and

hence can be used for more efficient ICA solutions using both

the commonly used statistics and the complementary statistics

that have been traditionally neglected. The algorithms that re-

ly on joint diagonalization of cumulant matrices are robust.

However, their performance suffers as the number of sources

increases, and the cost of computing and diagonalizing cumu-

lant matrices might become prohibitive for separating a large

number of sources. On the other hand, ICA techniques that ex-

ploit non-Gaussianity are the more attractive solutions for the

complex case as well. As in other areas for complex-valued

processing, circularity assumption was a common one for the

extension of popular ICA algorithms to the complex case as

in complex Infomax [77, 78] and complex FastICA [78]. As

expected, in the presence of noncircular sources, the perfor-

mance of those algorithms suffer. There are now a number of

powerful solutions available for complex ICA for the general

case where sources can be either circular or noncircular, e.g.,

[36, 38, 41, 43, 44, 80] as well as those that adapt to different

source distributions using general models such as complex

generalized Gaussian distributions [43, 81], or more flexible

models through efficient entropy estimation techniques as in

ICA by entropy bound minimization (ICA-EBM) [70].
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6.3. An application example: importance of accounting for

noncircularity. Two most commonly used ICA techniques

are based on maximum likelihood (ML) or maximization of

negentropy (MN), and the two are equivalent when the demix-

ing matrix is constrained to be unitary [40]. Infomax [58] has

been the most widely used algorithm for analysis of fMRI da-

ta following its first application to the problem [82] and can

be shown to be equivalent to maximum likelihood when the

score function is matched to the source density, and in the

case of orginal infomax [58] the super-Gaussian source that

corresponds to the sigmoid nonlinearity (score function). Its

first extension to the complex domain, circular infomax [77],

assumes again a fixed nonlinearity, again of sigmoid form that

matches most fMRI sources well as they tend to be mostly

super-Gaussian. However, it also assumes a circular distri-

bution, which might be quite limiting as discussed in Sub-

sec. 2.2. Circular infomax uses the nonlinear score function

that is a good match to typical super-Gaussian pdf given as

ϕ(u) = − log
∂p(u)

∂u
= sign(u)

1 − exp(−|u|)

1 + exp(−|u|)
,

where only the magnitude of the data has been considered and

all the phase information has been discarded. In this example,

we compare its performance with that of the complex version

of ICA-EBM [69] as discussed in detail in [10], which is a

powerful ICA approach using an adaptive density model.

Complex ICA-EBM algorithm. The complex ICA-EBM

algorithm uses the minimization of the mutual information

principle, which is equivalent to ML, to perform source sep-

aration. The cost function can be written as [42] I(y) =
n∑

k=1

H(uk) − 2 log | det(W )| − H(x) here H(uk) is the en-

tropy of the k-th spatial map. Instead of estimating H(uk)
directly, complex ICA-EBM estimates the tightest bound of

the entropy by assuming that the density of the sources

is either weighted linear combinations or elliptical distribu-

tion. Complex ICA-EBM can obtain a reliable estimate of

the bound of entropy by solving for the maximum entropy

distribution that maximizes the entropy under certain con-

straints. The associated maximum entropy distribution in-

cludes many bivariate distributions, such as Gaussian, uni-

form, (double) exponential, Student t, and GGD. Let us define

two density forms as p(u) = A exp[−au2 − bu − cGm(u)],
q(|u|) = A exp[−a|u|2 − cG(|u|)] where Gm is one of a set

of pre-determined measure functions and the parameters k,

a, b, and c are solved by using a normalization constraint,

the associated maximum entropy distribution of s could be

kp(sr)p(si) or kq(|u|) for two different entropy bounds. Four

function forms of G, including the unbounded fourth order

symmetric and bounded second-order asymmetric, are consid-

ered for the first entropy bound where the density is weight-

ed linear combinations. Two function forms of G, including

fourth order symmetric and first order asymmetric, are con-

sidered for the second entropy bound where the sources are

elliptical distributions. Among all the entropy estimates, only

the minimum one is used as the final estimate of the en-

tropy.

Dataset. The dataset used in the experiment is from 16

subjects performing a finger-tapping motor task while receiv-

ing auditory instructions [10]. The data are first preprocessed

using the quality map phase de-noising (QPMD) [4] discussed

in Subsec. 4.3. The fMRI data were multiplied by the mask

generated using QMPD and smoothed for the real and imag-

inary parts separately. Then components are estimated using

both the complex versions of Infomax and ICA-EBM.

6.4. Results of bivariate t-maps and difference t-maps. To

study the statistics across subjects, we can define a bivariate

t-map using the Hotelling T 2-test defined as [81]

T 2 = N < s >T C−1

S
< s >, (3)

where N is the number of realizations of random vector s. For

Hotelling T 2-test, < s > in (3) represents the sample mean

vector of a set of realizations from a multivariate Gaussian

distributed s. For a group of subjects, we can calculate the

mean image < s > of 16 subjects, where < s > represents

the sample mean vector of 16 2 × 1 vectors for each vox-

el. The covariance matrix CS is also defined with respect to

the 16 2 × 1 vectors, where each 2 × 1 vector is treated as

a realization of a 2 × 1 Gaussian random vector. Therefore

we can construct an image of size v using (3) and the val-

ue of each pixel represents a Hotelling T 2 value, where we

have assumed that the 16 2 × 1 vectors for each voxel are

the realizations of a multivariate Gaussian distribution. Such

an image might be called a group bivariate t-map. It should

be noted that 16 may be too small as a sample size and the

multivariate Gaussian distribution across different subjects is

also assumed for simplicity.

Using the Hotelling T 2 statistic defined in (3), we con-

struct a bivariate t-map for the two algorithms to check for

voxels that are significant active across the 16 subjects. How-

ever, the fMRI images estimated by the ICA algorithms have

phase rotation ambiguity and we cannot simply apply the T 2-

test. The phase ambiguity, is due to the ICA model x = As.

As we can observe, x = As = A′s′ where A′ = AD−1,

s′ = Ds and D represents a diagonal matrix whose entries

are complex, and hence include a magnitude and phase part.

Therefore there are infinitely many solutions of A and s since

D is an arbitrary diagonal phase rotation matrix. That is, for

the general ICA problem, it is impossible to recover the orig-

inal scale of the sources, which in the complex case includes

a magnitude and a phase term.

Hence, we perform the phase rotation on each estimate

to ensure that the largest magnitude of the estimate is on the

real axis since that is how the data we are using is acquired.

The value for each voxel in the bivariate t-map tells us how

the voxel values are distributed across different subjects. High

T 2-values in such figures might be regarded as an index in-

dicating that the voxel values are probably high for all the

subjects at that specific pixel and with probably lower vari-

ations across different subjects. We observed that the bivari-

ate t-maps looked visually similar for all the four algorithms.

However, in terms of hypothesis testing, the results were not

the same. For hypothesis testing, we are testing H0 : µs = 0
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versus H1 : µs 6= 0 where µs is the mean spatial map of

16 subjects. We accept H0 if T 2 < T 2
α,d,N−1 where α is the

probability of Type I error (accept H1 when H0 is in fact true),

d−2 is the dimension of random vector, and N−1 = 15 is the

degrees of freedom. For instance, T 2
0.05,2,15 = 8.01. We then

evaluate the number of voxels for the right motor component

when thresholded T 2 > T 2
0.05,2,15 at as 2761 for Infomax and

as 2951 for ICA-EBM, hence resulting in significantly greater

number of voxels for the flexible ICA-EBM that also accounts

for noncircularity of the sources.

We can also compute difference t-maps such that given

any two sets of estimated spatial maps with voxels Xijk and

Yijk , where Xijk denotes the k-th voxel in the j-th compo-

nent of the i-th subject, each voxel of 16 difference images

are calculated as Dijk = Xijk − Yijk . The difference images

of 16 subjects were calculated first, then a T 2-test was per-

formed. Results of difference bivariate t-maps show that the

adaptive ICA algorithms have significantly higher activation

within the motor area for each class as shown in Fig. 12.

Thresholding of complex analysis results. Estimated

sources for complex-valued data require a method which

takes into account both phase and magnitude. The thresh-

olding method introduced in [4] takes into account the

phase by using a Mahalanobis distance metric in the re-

al and imaginary data of the estimated sources given

by dk,i =
√

[̂sk,i − µk]T C−1
k [̂sk,i − µk] where ŝk,i =

[ŝk,i,r,e, ŝk,i,im]T ; and µk and CZk are the corresponding

mean and covariance of the estimated sources. Figure 13

shows results with this new Z-score that takes the complex

nature of data fully into account. An additional challenge

for fMRI group studies using complex-valued ICA is the

well-known inherent scaling ambiguity of ICA algorithms,

which in the complex case includes a phase term. Hence, for

complex-valued ICA, the phase term in the scaling ambiguity

presents an additional problem, since the estimated distribu-

tion of matching components across subjects then will have

different unknown rotations (in the complex plane), without

phase ambiguity correction, they can add destructively, hence

creating group average component images with lower magni-

tude and noisy phase images. In [4], two effective approaches

are introduced to correct for the phase ambiguity such that

successful group results can be obtained and presented using

complex fMRI data. In Fig. 12, we show the estimation re-

sults for a motor component where a total of 30 components

were estimated using circular Infomax [76] using data from

16 subjects performing a finger-tapping task, and using the

Mahalanobis z-score.

Fig. 12. Difference bivariate t-map for the motor component with ICA-EBM and circular Infomax
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Fig. 13. Mean magnitude (left) and phase (right) maps for the motor component (Mahalanobis z-score of 4)

7. Summary

In summary, we believe there is great potential in using the

phase information in an fMRI analysis. The convergence of

biophysical models and simulation approaches, high-field and

high-resolution data acquisition, preprocessing and denoising

approaches, and statistical modeling approaches which utilize

the fully complex data are pushing the field forward. However

significant challenges still remain and need to be addressed

before complex-valued fMRI data will become a mainstream

approach.
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Abstract. A multiway blind source separation (MBSS) method is developed to decompose large-scale tensor (multiway array) data. Benefit-

ting from all kinds of well-established constrained low-rank matrix factorization methods, MBSS is quite flexible and able to extract unique

and interpretable components with physical meaning. The multilinear structure of Tucker and the essential uniqueness of BSS methods allow

MBSS to estimate each component matrix separately from an unfolding matrix in each mode. Consequently, alternating least squares (ALS)

iterations, which are considered as the workhorse for tensor decompositions, can be avoided and various robust and efficient dimensionality

reduction methods can be easily incorporated to pre-process the data, which makes MBSS extremely fast, especially for large-scale prob-

lems. Identification and uniqueness conditions are also discussed. Two practical issues dimensionality reduction and estimation of number

of components are also addressed based on sparse and random fibers sampling. Extensive simulations confirmed the validity, flexibility,

and high efficiency of the proposed method. We also demonstrated by simulations that the MBSS approach can successfully extract desired

components while most existing algorithms may fail for ill-conditioned and large-scale problems.

Key words: Multiway Blind Source Separation (MBSS), Multilinear Independent Component Analysis (MICA), Constrained tensor decom-

positions, Tucker models, Nonnegative Tucker Decomposition (NTD).

1. Introduction and problem statement

How to find informative and sparse/compact representations

of massive experimental or measured multidimensional large-

scale tensor data is a fundamental and challenging problem

in data mining and data analysis. Although the basic mod-

els for tensor (i.e., multiway array) decompositions such as

Canonical Polyadic (CP) and Tucker decomposition models

were proposed a long time ago [1–4], they have only recently

emerged as promising tools for exploratory analysis of multi-

dimensional data in diverse applications, especially in dimen-

sionality reduction, feature extraction, Independent Compo-

nent Analysis (ICA), classification, prediction, multiway clus-

tering, and data mining [4, 5]. By virtue of their multiway

nature, tensors provide powerful tools for analysis and fu-

sion of large-scale, multi-modal, massive data together with a

mathematical backbone for the discovery of underlying hidden

complex data structures [4, 7–9]. From the data analysis point

of view, tensor decompositions are very attractive because

they take into account spatial, temporal and spectral informa-

tion, and provide links among the various extracted factors

or latent variables with physical or physiological meanings

and interpretations [5, 8, 10]. For example, tensor represen-

tations and decompositions allow us to investigate temporal,

spatial and spectral independent components and links among

them. Moreover, tensor decompositions are emerging tech-

niques for data fusion, pattern recognition, object detection,

classification, multiway clustering, Blind Source Separation

(BSS), sparse representation and coding [11–17], etc.

Most of the existing tensor decomposition methods are

focused on the minimum fitting error to the data. Howev-

er, quite different from the matrix case, the optimal low-rank

approximation may not exist at all [18] or, if it exists, may

not be unique for high-order tensors [7, 19, 20]. Particularly,

for Tucker decompositions the results are always non-unique

due to rotational freedom. As a result the extracted factors

often lack of physical meaning and are hard to interpret. To

overcome this drawback, constrained tensor decompositions

have received increasing interest in recent years. In this re-

gard, several authors have proposed applying ICA to the CP

and Tucker models, i.e., impose statistical independence in

at least one mode [21–24]. For example, in the methods pro-

posed in [21] and [22] ICA was combined with the CP model.

However, the CP model and its associated algorithms are of-

ten too restrictive as the number of components in each mode

is the same and there are no mutual interactions between com-

ponents in different modes. Very recently Unkel et al. (2011)

proposed a two-step method based on the Tucker-3 model in

which ordinary Tucker decomposition is performed first and

then statistical independence is imposed to refine the compo-

nents in only one mode by exploiting the rotational freedom

of the Tucker model [24]. Furthermore, Vasilescu and Ter-

zopoulos (2005) proposed a multilinear ICA method which is

also a two-step method but independence can be imposed on

either all the temporal components or the mixing matrix (spa-

tial components) [23]. However, this approach has not been

investigated deeply and only ICA is considered.

∗e-mail: cia@brain.riken.jp
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On the other hand, in the (2D) matrix case, very ef-

ficient low-rank constrained matrix factorization techniques

(also called penalized matrix factorizations) have been de-

veloped, such as principal component analysis (PCA), ICA

[25–28], sparse component analysis (SCA) [29, 30], smooth

component analysis (SmoCA) [5] and nonnegative matrix fac-

torization (NMF) [5, 31], just to name a few. These matrix

factorization techniques have their own bias, advantages, and

are widely applied to blind source separation (BSS), dimen-

sionality reduction, data compression and feature extraction,

by exploiting various assumptions and a priori knowledge. We

do not intend to duplicate these works which have been done

for matrices. Instead, we would like to show that such well-

established matrix factorization methods (especially, NMF,

SCA and ICA) can be extended to tensor scenarios directly

and uniformly. Motivated by efficiency and high level of flex-

ibility of BSS and various Component Analysis methods, we

investigate in this paper a multiway BSS (MBSS) approach to

perform constrained tensor decompositions with various con-

straints and diversities1, in order to provide more interpretable,

essentially unique2 components with physical meanings. To

the best of our knowledge, till now there was no available

systematic investigation of the validity and performance of

this approach which could incorporate any powerful and flex-

ible BSS techniques (beyond ICA3) to tensor decompositions.

Finally, the MBSS method can be viewed as a generaliza-

tion and extension of the wide variety of BSS techniques and

algorithms to multiway data.

The remainder of the paper is organized as follows. In

Sec. 2 basic models and concepts for Tucker decomposi-

tion are briefly introduced. In Sec. 3 the flexible and general

scheme of Multiway BSS is developed, as well as the discus-

sion on identifiability and uniqueness conditions are provided.

In Sec. 4 a method for dimensionality reduction and estima-

tion of the number of components is addressed. Finally, some

simulation results are presented in Sec. 5 and conclusions are

made in Sec. 6.

Basic notations. Tensors are denoted by underlined cap-

ital boldface letters, e.g., Y ∈ R
I1×I2×···×IN . The order of

a tensor is the number of modes, also known as ways or di-

mensions (e.g., space, time, frequency, subjects, trials, classes,

groups, and conditions). In contrast, matrices (two-way ten-

sors) are denoted by boldface capital letters, e.g., Y; vectors

(one-way tensors) are denoted by boldface lowercase letters,

e.g., the columns of a matrix A are denoted by aj , and scalars

are denoted by lowercase letters, e.g., aij .

The mode-n product Y = G ×n A of a tensor G ∈
R

J1×J2×···×JN and a matrix A = [ai,jn
] ∈ R

I×Jn is

a tensor Y ∈ R
J1×···×Jn−1×I×Jn+1×···×JN , with elements

yj1,j2,...,jn−1,i,jn+1,...,jN
=

∑Jn

jn=1(gj1,j2,...,jN
)(ai,jn

). The

symbol ⊗ denotes the Kronecker product, i.e., A ⊗ B =
[aijB], and the symbol ⊙ denotes the Khatri-Rao prod-

uct or column-wise Kronecker product, i.e., A ⊙ B =
[a1 ⊗ b1 · · ·aJ ⊗ bJ ]. Unfolding (matricization, flattening)

of a tensor Y ∈ R
I1×I2×···×IN in mode-n is denoted as

Y(n) ∈ R
In×Πp 6=nIp , which consists of arranging all possible

mode-n tubes (vectors) as the columns of the unfolded matrix

[4]. For simplicity, we define Ĭn = Πp6=nIp, J̆n = Πp6=nJp,⊗
p6=n

A(p) = A(N) ⊗ · · ·A(n+1) ⊗ A(n−1) · · · ⊗ A(1) and

⊙
p6=n

A(p) = A(N)⊙· · ·A(n+1)⊙A(n−1) · · ·⊙A(1). Readers

are referred to [4, 5] for more details about the notations and

tensor operations.

2. Tucker decomposition models

Tucker decomposition has been received intensive study in

recent years as one of the most important and flexible tensor

decomposition models. In Tucker decompositions, the data

are decomposed as the product of a core tensor with N mode

component matrices [2] (see Fig. 1), i.e., a given data tensor

Y ∈ R
I1×I2×···×IN is decomposed as

Y = G×1 A(1) ×2 A(2) · · · ×N A(N) + E = Ŷ + E

=

J1∑

j1=1

· · ·

JN∑

jN =1

gj1j2···jN

(
a

(1)
j1
◦ a

(2)
j2
· · · ◦ a

(N)
jN

)
+ E,

(1)

where G ∈ R
J1×J2×···×JN is the core tensor, A(n) =

[a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
Jn

] ∈ R
In×Jn is the mode-n compo-

nent matrix for n = 1, 2, · · · , N , and the tensor E ∈
R

I1×I2×···×IN represents errors or noise. We may al-

so use a shorter notation for (1) in the form Ŷ =
JG;A(1),A(2), . . . ,A(N)K for simplicity [4].

To extract the latent factors A(n) from Y, a Tucker-1

model is often useful

Y ≈G(−n) ×n A(n), (2)

where
G(−n) = G×1 A(1) · · · ×n−1 A(n−1)

×n+1A
(n+1) · · · ×N A(N),

or by using unfolding operations and matrix representation

Y(n) ≈ A(n)G
(−n)
(n) = A(n)[B(n)]T , (3)

where

G
(−n)
(n) = G(n)




⊗

p6=n

A(p)




T

def
= [B(n)]T . (4)

In other words, A(n) and G(n) are solutions to the following

least-square problem4:

min
∥∥∥Y(n) −A(n)B(n)T

∥∥∥
2

F
, (n = 1, 2, . . . , N). (5)

1By diversity, we mean different characteristics, features or morphology of source signals or hidden latent variables [27].
2By essentially unique, we understand a unique decomposition with arbitrary scaling and permutation of components.
3By “beyond ICA”, we understand that any BSS method can be applied, e.g., PCA/SVD, NMF, SCA.
4Alternatively, we can solve the least-square problem min ‖Y

(−n)
(n)

− A
(n)

G(n)‖
2
F instead, where Y

(−n)
(n)

is the mode-n unfolding of tensor

Y
(−n) = Y ×1 [A(1)†] · · · ×n−1 [A(n−1)†] ×n+1 [A(n+1)†] · · · ×N [A(N)†].
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Y G 
E 

Fig. 1. Illustration of a 3-way tensor decomposition using the Tucker-3 model. The objective is to estimate the components a
(n)
jn

, i.e., columns

of the component matrices A
(n) = [a

(n)
1 ,a

(n)
2 , . . . ,a

(n)
Jn

] ∈ R
In×Jn , with desired diversities or statistical properties, and a possibly sparse

core tensor G ∈ R
J1×J2×J3 , typically with Jn ≪ In, (n = 1, 2, 3). Instead of applying the standard Alternating Least Squares (ALS)

algorithms to the Tucker-3 model, we can apply the unfolding of the data tensor according to the Tucker-1 models and then perform

constrained matrix factorizations for the unfolded matrices (multiway BSS) by imposing desired constraints (e.g., nonnegativity, sparseness,

statistical independence, smoothness or decorrelation, etc)

Hence, A(n) and G can be updated sequentially by freezing

all set of matrices except one

A(n) ← Y(n)[B
(n)]†, (n = 1, 2, . . . , N),

G← Y ×1 A(1)† ×2 A(2)† · · · ×N A(N)†,
(6)

where † denotes the Moore-Penrose pseudo inverse of ma-

trices. To achieve the optimal fitting error, the above steps

are repeated till convergence. These update rules are often

referred to as alternating least-square (ALS) method.

From the above analysis, standard ALS methods in-

volve frequently unfolding operations and matrix-matrix

Kronecker/Khatri-Rao products. For example, the matrix

B(n) ∈ R
In×Ĭn having a Kronecker structure in (4) is huge

for large-scale problems. This makes the ALS methods quite

time and memory consuming, and therefore not suitable for

large-scale data.

3. Constrained Tucker decomposition

using Multiway BSS

3.1. Motivation. The Tucker decomposition attempts to give

optimal low-rank ({J1, J2, . . . , JN}) approximations of the

original data. However, quite different from the matrix case,

the optimal low-rank approximation may not exist at all or, if

it exists, may not be unique for high-order tensors [7, 18–20].

Particularly, unconstrained Tucker decompositions are always

non-unique since

Y ≈G×1 A(1) ×2 A(2) · · · ×N A(N)

= [G×1 Q(1)† ×2 Q(2)† · · · ×N Q(N)†]

×1(A
(1)Q(1)) · · · ×N (A(N)Q(N)),

(7)

where Q(n) ∈ R
Jn×Jn is any nonsingular matrix. So the com-

ponent matrices in unconstrained Tucker decompositions are

with many degrees of freedom and usually have no specific

physical meaning or interpretation.

Based on these facts, it is reasonable to consider con-

strained tensor decompositions, which achieves not necessar-

ily the best fit but the most meaningful and featured compo-

nents instead. Generally, a constrained Tucker decomposition

problem can be formulated as minimization of the cost func-

tion:

DF

(
Y‖Ŷ

)
=

‖Y −G×1 A(1) ×2 A(2) · · · ×N A(N)‖2F

+
N∑

n=1

αnHn(A(n)),

(8)

where ‖Y‖F = (
∑I1

i1=1 · · ·
∑IN

iN =1 y2
i1···iN

)1/2, αn ≥ 0 are

penalty coefficients and Hn(A(n)) are penalty terms which

are added to achieve specific properties of the components.

For example, if we need to impose mutual independence con-

straints the penalty terms can take the form Hn(A(n)) =∑Jn

j=1

∑
p6=j a

(n)T
p φn(a

(n)
j ), where φn(x) are suitable non-

linear functions.

In principle, model (8) leads to a penalized or constrained

ALS algorithms which allows us to find component matrices

A(n) and the associated core tensor G, as the ALS algorithms

are considered as basic “workhorses” for tensor decompo-

sitions. However, as mentioned above, ALS iteration based

algorithms have high computational complexity, and due to

constraints, they may suffer often from slow convergence. For

example, existing nonnegative Tucker decomposition methods

often converge very slowly. Particularly, even if we optimize

(8) in a global way, the ALS algorithms may stuck in local

minima due to noncovexity of cost functions.

3.2. Multiway BSS. In this section, we investigate a sim-

pler yet much more efficient and flexible approach by ex-

ploiting separately each mode-n unfolding matrix Y(n) of
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the data tensor Y, according to the Tucker-1 decomposi-

tions (3), which allows us to directly apply suitable con-

strained matrix factorization methods to Tucker decomposi-

tions. Let Y ≈ JG;A(1),A(2), . . . ,A(N)K. We have

Y(n) ≈ A(n)B(n)T , (n = 1, 2, . . . , N), (9)

where the mixing matrices have a special Kronecker structure

B(n) = [G
(−n)
(n) ]T defined by (4).

From (9), we note that the columns of the mode-n ma-

tricization of Y are just linear mixtures of the columns of

A(n), (n = 1, 2, . . . , N ). This suggests that we can use vari-

ous BSS algorithms to directly extract the component matrices

with specific properties and diversities, without consideration

of the special Kronecker structure of the basis matrices B(n)

due to the essential uniqueness of BSS.

Assume that the component matrices of interest can be

separated by a standard BSS algorithm with unavoidable scal-

ing and permutation ambiguities:

Â(n) = Ψn(Y(n)) = Ψn(A(n)B(n)T ) = A(n)PnDn,

(n = 1, 2, . . . , N),
(10)

where Ψn denotes symbolically a specific BSS method, the

subindex n indicates the fact that for each mode different

method and criteria can be employed, and for each mode

we have different scaling Dn and permutation Pn ambigu-

ity. From (10), for each mode different constraints can be

imposed depending on the expected or known physical prop-

erties of the components. This is also one major difference

between MBSS and the existing multilinear ICA algorithms

where only ICA criteria are considered.

We have two basic ways to implement constrained Tucker

decomposition in practice:

Independent Extraction of Factor Matrices. In this case

each component matrix A(n) is estimated from the mode-

n matricization of Y independently and separately by us-

ing (10). Once all desired component matrices A(n) (n =
1, 2, . . . , N ) have been estimated, the core tensor can be com-

puted, for example, from:

Ĝ = Y ×1 A(1)† ×2 A(2)† · · · ×N A(N)†. (11)

Alternatively, we can apply multiplicative update formula pro-

posed in [5, 16], e.g., if we wish to impose nonnegativity

constraints on the components and the core tensor5.

Sometimes only partial pre-specified factors, say A(K),

K < N , can be extracted by using BSS. For the Tucker de-

composition, the remainder component matrices and the core

tensor can be obtained, e.g., by using ordinary ALS iteration

based methods, such as HOOI [7, 32]. In most cases, however,

the remainder component matrices are simply of no interest

because they do not carry any important information, or the

information they carry can be simply absorbed into the core

tensor. This often leads to a partial Tucker decomposition.

Without loss of generality, let us assume that we are interest-

ed in extracting only the first K , with K ≤ N component

matrices. In such a case, we can use a simplified Tucker-K

model described as

Y = Ğ×1 A(1) ×2 A(2) · · · ×K A(K) + E, (12)

where the partial core tensor Ğ ∈ R
J1···×JK×IK+1···×IN

is

expressed as

Ğ = G×K+1 A(K+1) ×K+2 A(K+2) · · · ×N A(N). (13)

Note that the Tucker-K model (12) can be represented equiv-

alently by a set of K different matrix factorizations with three

factors:

Y(k) ≈ A(k) Ğ(k) Z(k), (k = 1, 2, . . . , K), (14)

where Z(k) =
[
A(K) ⊗ · · · ⊗A(k+1) ⊗A(k−1) · · · ⊗A(1)

]T
.

Again, A(k) can be extracted by using proper BSS methods

due to the linearity of (14). Finally,
̂̆
G can be computed from

̂̆
G = Y ×1 A(1)† ×2 A(2)† · · · ×K A(K)† (15)

or some other proper methods. This procedure is illustrated

in the rightmost diagram of Fig. 2.

Sequential extraction and update of factor matrices. In

this case, after A(n) has been estimated by using (10), then

the observation tensor Y can be updated (reduced) as

Y ← Y ×n A(n)†. (16)

After update, the size of new data Y can be significantly

reduced taking into account that Jn ≪ In. For large-scale

problems this can reduce the total computational complexi-

ty. After all component matrices have been estimated, we let

G =Y. This way is often more efficient than the Independent

Extraction approach if the order of data tensor is not very

high. However, we have to carefully chose the BSS methods

in this approach, because, first of all, current poor separation

accuracy may deteriorate the subsequent separation accuracy.

Second, the order of selection of modes should be carefully

considered according to the constraints and the dimensionali-

ty of factor matrices. For example, it is suggested to estimate

first nonnegative components since many standard BSS algo-

rithms may often destroy the nonnegativity. Otherwise, the

mode with the highest dimensionality may be considered first

as it can reduce the data tensor Y most significantly. See

Fig. 2 (middle of the figure) for the diagram illustrating this

approach.

5Since core tensors can be represented in unfolded form via matrix factorizations (see e.g., Eq. 14), we can apply any suitable BSS method to estimate

constrained core tensors (e.g., NMF, SCA, ICA) with a little sacrifice in fit.
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Fig. 2. TuckerBSS versus MBSS. Here, PPn and BSSn denote the pre-processing procedure and the BSS method for mode-n, respectively,

(n = 1, 2, · · · , N ). Theoretically all the three approaches for noiseless data should give the same results but MBSS methods are more

efficient and flexible

The methods described above are referred to as multiway

blind source separation (MBSS) since multiple sets of signals

with specific physical meaning are extracted from different

modes of the data tensor by using BSS methods, based on the

multilinear structures of Tucker model. The name MBSS is

used to emphasize its difference from ordinary unconstrained

Tucker decompositions.

It is worth noticing that there are two possible interpreta-

tions of the results using constrained Tucker decompositions

for the MBSS. In the first approach the columns of compo-

nent matrices A(n) represent the desired components or la-

tent variables, and the core tensor represents a kind of “mix-

ing process”. More precisely, the core tensor shows the links

among the components from different modes, while the data

tensor Y represents a collection of multidimensional mixing

signals. In the second approach, the core tensor represents the

desired but unknown (hidden) N -dimensional signal (e.g., 3D

MRI image or 4D video) and the component matrices repre-

sent specific dictionaries or transformations, e.g., time fre-

quency transformations or wavelets dictionaries (mixing or

filtering processes). In this case the data tensor Y represents

the observed N -dimensional signal, which may be distorted,

transformed, compressed or mixed, depending on the specific

applications. In this paper we only consider the first interpre-

tation or approach.

Remark. The similar approach can be applied for constrained

Candecomp/PARAFAC (CP) model, especially when compo-

nents are highly collinear or problem is very ill conditioned

or sample number in some modes are very small. However,

for the CP model we need only to perform unfolding in a sin-

gle (one) mode and apply a suitable standard BSS (e.g., ICA,

NMF or SCA). On basis of the components in this mode we

can compute uniquely components in all other models using

SVD. Details can be found in our separate paper [33].

3.3. Identifiability conditions and uniqueness of MBSS.

Note that the separability of the MBSS depends on two con-

ditions: full column rank of each mixing matrix B(n) and

suitable assumptions on the component matrices A(n), for

example, assuming that the components in specific modes

are statistically independent, or nonnegative and/or sparse.

These assumptions are generally application-dependent and

are based on some a priori knowledge of expected features of

A(n). Here, we always assume that this a priori knowledge

is available in order to choose suitable BSS algorithms and

criteria6.

For the constrained Tucker decompositions, we have the

following proposition:

Proposition 3. If the elements of A(n) and G are drawn

from independent Gaussian distributions, and min(Ĭn, J̆n) ≥
Jn, then B(n) given by (4) is of full column rank with prob-

ability one.

Proof. First rank(G(n)) = Jn and rank(A(n)) = min(In, Jn),
n = 1, 2, . . . , N , hold with probability one [34]. Thus the ma-

trix G(n) is of full column rank with probability one. More-

over, rank(
⊗

p6=n A(p)) = Πp6=nrank(A(p)). It can be easily

verified that det(B(n)TB(n)) is not identical to zero. The set

satisfying det(B(n)TB(n)) = 0 is therefore Lebesgue mea-

sure zero [35] (Theorem 5 A.2). In other words, B(n) is of

full column rank with probability one. This ends the proof.

6For example, components in the frequency domain are usually nonnegative and smooth, while spatial components are usually sparse and temporal

components are often mutually independent.
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3.4. MBSS versus Tucker BSS. As a matter of fact, many

authors have considered imposing constraints on the factor

matrices to retrieve meaningful factors [21–24, 36]. For ex-

ample, Beckamnn and Smith [21], and De Vos et al. [22]

combined the CP model and ICA. Unkel et al. [24] proposed

adding ICA algorithms to the Tucker-3 model and this method

can be referred to as Tucker-ICA. However, MBSS allows us

imposing various constraints in each mode. There is neither

a theoretical nor experimental basis for the idea that statis-

tical independence (ICA) is the uniquely correct concept to

extract latent hidden components [37, 38]. In real world sce-

narios, latent (hidden) components may have various statisti-

cal properties and features. We often need to apply a fusion

of strategies by employing several suitably chosen criteria and

the associated learning algorithms to extract all desired com-

ponents in specific modes [5, 6, 38]. Therefore, if instead

the ICA alternative BSS algorithms are adopted, this two-

step approach can be referred to as the TuckerBSS method.

Figure 2 depicts the basic scheme of TuckerBSS. TuckerB-

SS looks quite intuitive, simple, and often gives meaningful

results.

In the following we explain why we propose MBSS in

more details. First of all, MBSS theoretically gives the con-

sistent results with TuckerBSS in the ideal noiseless case,

however it is usually more robust for noisy data.

Proposition 4. Suppose that we have two exact Tuck-

er decompositions Y = JG;A(1),A(2), . . . ,A(N)K and

Y = JH;X(1),X(2), . . . ,X(N)K for the same tensor Y, ob-

tained by an arbitrary Tucker decomposition algorithm, and

rank(A(n)) = rank(Y(n)) = Jn. Then there holds that

X(n) = A(n)Q(n), where Q(n) ∈ R
Jn×Jn is an invertible

matrix, (n = 1, 2, . . . , N ).

The proof is straightforward and is omitted here. Propo-

sition 4 means that the Tucker decomposition just gives a

linear mixture (i.e., the range) of A(n). Indeed, any linear

mixture of the columns of A(n) is a solution. To retrieve the

unique component matrices from their linear mixtures, the

two-step TuckerBSS method applies specific BSS algorithms

to the component matrices obtained by unconstrained Tucker

decompositions:

Â(n) = Ψn(X(n)) = Ψn(A(n)Q(n)) = A(n)PnDn,

(n = 1, 2, . . . , N).
(17)

By using the MBSS approach, however, these constrained

component matrices can be extracted directly from the un-

folded matrices Y(n), as Y(n) itself is assumed to be a linear

mixture of the columns of A(n). In other words, the source

separation and the unique Tucker decomposition can be per-

formed simultaneously, see (10) and (17) for a comparison.

Note also that the results are just the same as those obtained

via TuckerBSS, because the separation results of BSS are in-

dependent of the mixing matrix B(n) if it is full rank. In other

words, although both MBSS and TuckerBSS are able to give

unique, meaningful, and essentially consistent components, in

MBSS the additional unconstrained Tucker decomposition is

simply unnecessary.

In the following we summarize the advantages of MBSS

versus TuckerBSS.

1. Considerable flexibility and robustness. In MBSS, any

existing matrix factorization methods can be employed

directly. Furthermore, various pre-processing procedures

such as dimensionality reduction, source number estima-

tion developed for matrices can be easily and straight-

forwardly incorporated, which can significantly improve

the efficiency and performance of MBSS. However, in the

TuckerBSS we have to carefully design different Tucker al-

gorithms to adapt to different situations. Typically, most

existing Tucker decomposition methods have assumed the

noises are drawn from independent Gaussian distributions.

However, if the noises are, e.g., very sparse and of very

high amplitude, they lead to very high approximation er-

ror and thus TuckerBSS will achieve very low separation

accuracy. In the MBSS, however, we can simply use, e.g.,

robust PCA proposed in [39] to remove the sparse noise

and then extract the latent signals. This feature of MBSS

will be illustrated in Simulation 2.

2. High efficiency and simplicity. In ALS based methods

we have to unfold the tensor and perform matrix-matrix

(Kronecker/Khatri-Rao) products frequently. These opera-

tions are often time and memory consuming, which severe-

ly hinders their applicability, especially for large-scale and

noisy data. In the MBSS, we unfold the data tensor in each

mode only once. Moreover, we do not need to consider the

Kronecker/Khatri-Rao structure of B(n) in (4) and (10) ex-

plicitly due to the essential uniqueness of BSS. This will

significantly reduce the computational complexity. More-

over, as we will see later, by incorporating state of the art

dimensionality reduction methods, the efficiency of MBSS

can be further substantially improved. This feature will be

illustrated by extensive simulations in Sec. 5.

Another subtle difference between MBSS and TuckerB-

SS is that in TuckerBSS the minimum fitting error is pur-

sued first and then the feature information of the components

is maximized, whereas in MBSS the feature information is

maximized based on the multilinear structure and the feature

information directs the components to the desired one. As

pure pursuit of minimum fitting error has theoretical limitation

[18], and existing Tucker decomposition methods have implic-

itly or explicitly assumed the noises are Gaussian, MBSS can

be more flexible and practicable for real data analysis.

One may argue that MBSS is simply ordinary BSS. It is

the truth if we only consider one mode7. However, we usually

have to extract several factors from the data in different. These

multiple factors are linked or associated via the core tensor,

see (1), and provide extra information and facilities in da-

ta exploration, interpretation, projection, and transformation,

7Also, if we look only in one mode, tensor decomposition is simply ordinary constrained matrix factorization, by using matricization. The key point is

that in tensor decomposition multiple factors from multiple modes are involved, and links between them are established.
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etc. In summary, in MBSS the high-way data is explained and

interpreted by a Tucker structure but this structure is realized

by using ordinary BSS methods. The MBSS benefits from its

delicate and comprehensive multilinear structures compared

with ordinary BSS. Moreover, it provides more interpretable

components with physical meanings, compared with uncon-

strained tensor decompositions.

4. Dimensionality reduction and estimation

of the number of components

In this section we discuss two important pre-processing proce-

dures, that is, dimensionality reduction and estimation of the

number of components. The matrices Y(n) and B(n) have the

large sizes of In × Ĭ(n) and Ĭ(n) × Jn, respectively, typically

with Ĭn ≫ Jn. Therefore, problems we encounter here are

usually large-scale, highly over-determined and thus could be

challenge in practice. To reduce the computational complexity,

the dimensionality reduction step should be performed first.

Moreover, the adaptive estimation of the number of compo-

nents Jn in each specific mode of interest is another impor-

tant issue. Note that at first, we have assumed that the noises

are Gaussian, which is the standard assumption for most ten-

sor decomposition methods. After that we will briefly discuss

how to deal with the cases when have different non-Gaussian

distributions.

In order to perform dimensionality reduction, we can ap-

ply standard PCA (e.g., using truncated SVD) to each un-

folding matrix Y(n). In more detail, we perform eigenvalue

decompositions Y(n)Y
T
(n) = UJn

ΛUT
Jn

first (supposing that

Ĭn > In), where UJn
consists of the first Jn leading eigenvec-

tors. Then, we run BSS on the dimensionality reduced matrix

UT
Jn

directly8. This way involves the eigenvalue decompo-

sition of an In × In matrix, and gives the optimal low-rank

approximation of the observations, in the sense of least square.

Therefore, PCA is preferred for some ordinary BSS tasks if the

scale of the problem is moderate. However, it suffers from a

heavy computation load and huge memory use for large-scale

problems, i.e., both Ĭn and In are very large [40]. Moreover,

PCA/SVD will not preserve nonnegativity constraints, thus

it is not directly suitable for the cases in which nonnegative

components are desired.

Note that each column of Y(n), namely y(n), is exactly

a linear combination of the columns of A(n). Thus, we can

estimate A(n) from a new observation matrix whose columns

are sampled from the columns of Y(n) since BSS is gener-

ally independent of the specific mixing matrix. By thus, the

dimensionality of observations can be significantly reduced,

and the nonnegativity can be preserved. In ideal noise free

case, even only Jn columns would be sufficient to estimate

A(n). In general, we want to use as small as possible num-

ber of columns to approximate the original huge observation

matrix, then run BSS on the significantly reduced observa-

tion matrix. The CUR method presented in [41] confirms that

a huge matrix can be approximated by suitably sampling its

columns and/or rows. Based on this, we can run BSS on the

sampled columns of Y(n) without accessing the whole ten-

sor9. By using this approach the computational efficiency can

be significantly improved and the use of memory can be re-

duced as well.

Another important fact is that the columns of Y(n) are

simply built up from the mode-n fibers10 of Y. Using MAT-

LAB notations, the mode-n fibers of an N -way tensor Y are

denoted as yi1i2···in−1,:,in+1···iN
, or in short, y(n) [32]. In

the MATLAB environment, thanks to the support for multi-

dimensional arrays, we can access and sample the fibers di-

rectly from the tensor, and the sampled fibers form a reduced

observation matrix, say Ỹ(n), without the need to explicitly

construct the full unfolding matrix Y(n) in advance. Conse-

quently, the sampling procedure can be very efficient and it

is very similar to the Fiber Sampling Tensor Decomposition

(FSTD) method [42], which is a generalization of CUR de-

composition for tensors (see Fig. 3). The FSTD is based on

the following theoretical results [42]:

Y ≈ G̃×1 Ỹ(1) ×2 Ỹ(2) · · · ×N Ỹ(N), (18)

where Ỹ(n) ∈ R
In×Jrn are matrices consisting of mode-n

fibers sampled from the data tensor Y directly, In ≫ Jrn
≥

Jn. The value of Jrn
depends on the level of noise and in

practice it is often sufficient that Jrn
≥ 5Jn [5]. It should be

noted that each column of Ỹ(n) is a linear combination of

the columns of A(n). Hence, we can directly apply the FSTD

procedure in the MBSS, i.e., run BSS on Ỹ(n) and retrieve

A(n) from the linear mixtures Ỹ(n), as illustrated in Fig. 3.

However, in our MBSS approach there are some major sim-

plifications and modification with comparison to the original

FSTD:

• The computation of the core tensor G̃ is unnecessary,

since it is not essential for the estimation of A(n), n =
1, 2, . . . , N .

• We do not need to sample all the modes simultaneously.

Instead we sample each mode sequentially and indepen-

dently.

• The numbers of components, i.e., Jn, are usually unknown

in practice. In such case we need to determine the value of

Jn (and thus Jrn
).

8If occasionally In > Ĭn, the eigenvalue decomposition of YT
(n)

Y(n) = VJn
ΣΛT

Jn
should be computed instead. Then we apply a suitable BSS method

for low-rank approximation matrix V
T
Jn

Y
T
(n)

.
9This sampling procedure only reduces the redundant mixed (observed) signals without destroying any property (e.g., temporal property) of source signals.

Therefore, we can run BSS methods on the sampled mixtures to estimate the sources.
10A fiber of a tensor Y is a vector defined by fixing every subscript of Y but one.
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Fig. 3. Illustration of FSTD and MBSS based on fiber sampling of a 3D tensor. Note that on one hand, the columns of eY(n) are sampled

from the fibers of the original data tensor Y; on the other hand, these columns/fibers are the linear combinations of the columns of factors

A
(n). Thus we can run various BSS algorithms (optionally, with PCA) on the sampled fibers directly to extract A

(n)

Now, we will discuss how to determine the number of

fibers to be sampled. Assume that the additive noises are

drawn from independent Gaussian distributions with zero

mean, and a total of Jrn
fibers are sampled and stored in

Ỹ(n). Let ỸT
(n)Ỹ(n) = VΛVT be the eigenvalue decomposi-

tion of ỸT
(n)Ỹ(n) with the eigenvalues λi, i = 1, 2, · · · , Jrn

.

It is well known that λ̂i = λi + σ2
ε for i = 1, 2, · · · , Jn, and

λ̂i = σ2
ε for i > Jn, where λi corresponds to the signal space

and σ2
ε measures the level of noise. Without loss of generality,

assume that [9]

λ̂1 ≥ λ̂2 · · · ≥ λ̂Jn
> λ̂Jn+1 ≈ · · · ≈ λ̂Jrn

≈ σ2
ε . (19)

Intuitively, to estimate the number of components, i.e., Jn,

we only need to locate the GAP (jump) between the eigen-

values corresponding to the signal space (with noise) and the

pure noise space. Based on (19), a so-called Second ORder

sTatistic of the Eigenvalues (SORTE) method is developed to

locate this GAP [9]. Let ▽λ̂i = λ̂i − λ̂i+1 denote the dif-

ference of neighbor eigenvalues and σ̂2
p be the variance of

{▽λ̂i : i = p, p + 1, · · · , Jrn
− 1}. That is,

σ̂2
p = var

[
{▽λ̂i}

Jrn−1
i=p

]

=
1

Jrn
− p

Jrn−1∑

i=p


▽λ̂i −

1

Jrn
− p

Jrn−1∑

i=p

▽λ̂i




2

.

(20)

The SORTE method estimates the number of components,

i.e., Jn, by locating the maximal GAP between the eigenval-

ues of λ̂i as follows:

Jn = arg min
p

GAP(p) = arg min
p

σ̂2
p+1

σ̂2
p

,

p = 1, 2, . . . , Jrn
− 3.

(21)

The SORTE implicitly depends on a reliable and stable es-

timation of the eigenvalues of the covariance matrix, which

means that the number of samples should be sufficiently large.

Therefore, we keep sampling the columns of Y(n) until a

satisfactory estimate of λ̂i, i.e., a stable estimate of Jn, is

reached, as demonstrated by Fig. 4. In Fig. 4 the data (obser-

vation) matrix Y ∈ R
100×1000 with rank 10 is contaminated

by white Gaussian noise with SNR=20dB, r is the rank es-

timated by SORTE from the Jr sampled columns, and ρ is

defined as

ρ =
Errs − Err∗

‖Y‖F
, (22)

where Errs is the best rank-r approximation error by run-

ning PCA on the Jr sampled columns, whereas Err∗ is the

optimal rank-r fitting error achieved by PCA using the matrix

Y. From Fig. 4, with the sampled columns Jr increasing, the

number of components r estimated by SORTE increases and

fluctuates at first. However, after Jr ≥ 20, r does not increase

any more. Moreover, the approximation is gradually closer

to the optimal low-rank approximation. Thus, the number of

components is estimated, and at the same time, the observa-

tion matrix is approximated by a much smaller submatrix Ỹ.

In the next section simulations will show that this sampling

procedure achieves a good tradeoff between efficiency and ac-

curacy. Based on above analysis, a fast Fiber Sampling-based

SORTE (FSSORTE) method is proposed and implemented

to perform estimation of the number of components and di-

mensionality reduction, see Algorithm 4 for details. (In the

algorithm, freq(rn) computes the frequency of occurrence

of rn).
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Fig. 4. Illustration of adaptive low-rank approximation and rank detection by random sampling-based SORTE. The rank r is the rank

estimated from the Jr sampled columns by using SORTE, and ρ is defined by (22)

Algorithm 1: Fiber sampling-based SORTE for dimensional-

ity reduction and rank detection (FSSORTE)

Input: Y(n) ∈ R
In×Ĭn , (n = 1, 2, . . . , N ).

Output: Jn = rn and Ỹ(n) ∈ R
In×Jn (or Ỹ(n) ∈ R

In×t

for NMF).

for t = 1, 2, · · · , do

Ỹ(n)(:, t) = y
(t)
(n), where y

(t)
(n) is a randomly sampled

mode-n fiber and ‖y
(t)
(n)‖ > ε;

if mode(t, p0) = 0 then

λ̂t ← eigenvalues of ỸT
(n)Ỹ(n);

rn = SORTE(λ̂t);
if freq(rn) > γ and t > p× rn then

Output Ỹ(n) if nonnegativity is required; otherwise

output Ỹ(n) = Ỹ(n)Vrn
, where Vrn

is the rn

eigenvectors corresponding to the rn largest eigen-

values of ỸT
(n)Ỹ(n).

break;

end if

end if

end for

In the FSTD method the entries with larger absolute val-

ues dominate the sampling procedure. In our case random

uniform sampling is utilized instead but with the restriction

that ‖y
(t)
(n)‖ > ǫ. In the case where the number of components

is known, we can simply terminate FSSORTE if Jrn
> pJk,

and p ≥ 5 is an empirically-based choice [5]. FSSORTE out-

puts the optimal number of components rn = Jk and the

significantly reduced matrix Ỹ(n). Compared with standard

PCA, Algorithm 1 performs eigenvalue decomposition of a

series of Jrn
× Jrn

matrices. Considering that the number

of latent sources of the high dimensional data is relatively

small with Jn ≤ Jrn
≪ In, Algorithm 1 is more efficient

than standard PCA. Note that the projection Ỹ(n)Vrn
actual-

ly gives a random approximation of PCA and it can be used

for ordinary BSS algorithms. However, if the original tensor

is nonnegative and we want to run NMF to estimate the com-

ponent matrices, we generally use the sampled fibers Ỹ(n)

directly without projection.

It is worth noticing that in the above analysis the nois-

es have been assumed to be Gaussian. Under this consump-

tion, some methods to estimate the number of components

has been proposed for three way tensors, see, e.g., [43, 44].

On the other hand, some alternative methods have been pro-

posed to estimate the latent components in the matrix case

[45]. Apparently, the proposed approach enables us to em-

ploy all these methods freely and avoid extensively repeating

these work which has been done for matrices.

If the noise is not Gaussian, we need to apply anoth-

er suitable low-rank approximation methods. For example, if

the additive noise is very sparse, we can use the robust PCA

(RPCA) proposed in [39] to perform dimensionality reduction

and filter out noise. From this point of view, MBSS is actually

quite flexible because any well-established matrix factoriza-

tion methods can be easily incorporated for specific purposes

and analysis, instead of re-designing all kinds of new methods

for tensors.

5. Simulations

In this section the validity and efficiency of the MBSS is in-

vestigated by simulations of synthetic and real data. We use

two performance indices (PI) to evaluate the performance.

The first one is the signal-to-interference ratio (SIR) which is

defined by

SIR(a, â) = 10 log10

∑
t a2

t∑
t(at − ât)2

, (23)

where a, â are normalized with zero mean and unit variance,

and â is an estimate of a. The value of SIR reflects how well
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the estimated component (source) matches the true original

one. The second PI measures the fit of the estimated tensor

to the original raw data tensor and is defined as

fit(Y, Ŷ) = 1−
‖Y − Ŷ‖F
‖Y‖F

, (24)

where Ŷ is an estimate of Y. For synthetic data Y denotes

the noiseless tensor whereas it denotes the observation data

for real data because in this case the latent noiseless data are

unknown. Obviously, fit(Y, Ŷ) = 1 if and only if Ŷ = Y.

All the simulations were done in MATLAB 2008a on a com-

puter with Intel 7i 3.33GHz CPU and 24GB memory running

Windows 7.

Simulation 1. In this simulation different constraints were

imposed on the components in different modes, that is, tem-

poral (second-order statistics) decorrelation in mode-2 and

mode-3 (they were chosen as acsin10d, which is included in

the benchmark of ICALAB [46]), and the higher-order statisti-

cal independence in mode-1. The elements of A(1) ∈ R
500×4

and the core tensor G ∈ R
4×5×5 were drawn from inde-

pendent uniform distributions. Finally, very heavy Gaussian

noise with SNR=0dB was added. We used EFICA [47] to

extract the first component matrix and the SOBI [48] to ex-

tract the two others, respectively. The MBSS approach was

compared with the higher-order orthogonal iteration (HOOI)

algorithm presented in [32] and the standard ALS, i.e., Tuck-

erALS implemented in the N -way toolbox [49]. Because the

ordinary Tucker decompositions are always non-unique, we

used EFICA and SOBI to refine the component matrices ob-

tained by HOOI and TuckerALS, which can be viewed as

two-step implementations of TuckerBSS, and were denoted

as HOOI+BSS and TuckerALS+BSS, respectively. The maxi-

mum iteration number was set 100 for HOOI and TuckerALS.

The results are shown in Table 1. It can be seen that if all

the fibers were employed, MBSS achieved the same separa-

tion accuracy as the other two methods. However, MBSS was

about two times faster. When 500Jn fibers were sampled (de-

noted by 500x), MBSS was about five times faster than the

other methods and achieved satisfactory separation accuracy.

This feature makes MBSS very competitive for large-scale

problems.

Table 1

Comparison of performances of the MBSS, HOOI+BSS and

TuckerALS+BSS for the decomposition of a large tensor with mixed

constraints. Very heavy Gaussian noise with SNR=0dB was added. MBSS

[500x] used 500Jn randomly sampled fibers whereas MBSS [100%] used

all the fibers

Algorithm mSIR1 mSIR2 mSIR3 Runtime(s) Fit

MBSS [500x] 41 17 25 1.9 0.96

MBSS [100%] 41 18 25 4.1 0.99

HOOI 41 18 24 9.3 0.99

TuckerALS 47 18 25 11 0.99

In some applications the noise may not be Gaussian. For

example, in electroencephalography (EEG) signal processing,

eye blink artifacts typically are sparse yet have very large am-

plitude. To simulate this kind of situations, we added sparse

noise to the observation tensor Y as follows. We randomly

selected 1000 entries from Y and added huge bipolar sparse

noise (outliers drawn from Gaussian distribution) with the

SNR = −20 dB.

For this corrupted by spiky noise tensor, both HOOI+BSS

and TuckerALS+BSS failed to retrieve the latent components,

see Fig. 5c and d. In fact they also achieved very low fit to

the original tensor, as shown in Table 2. In MBSS, we ran-

domly sampled only 100Jn fibers first. Then, we applied the

Robust PCA (RPCA) proposed in [39] on the sampled fibers

to filter out the sparse outliers noise. Finally, we apply ordi-

nary PCA, SOBI and FastICA algorithms to retrieve hidden

factors. The recovered waveforms were plotted in Fig. 5b. It

can be seen that the recovered signals match the true sources

very well. The mean SIRs, runtime, and fit are detailed in

Table 2. In fact, only MBSS was able to extract the desired

components with a high accuracy in the presence of outliers.

From the simulation results, MBSS is more flexible and ver-

satile as any off-the-shelf matrix factorization methods can

be easily incorporated11. Figure 6 plots the mean SIRs of

A(1) obtained by MBSS with different configurations over 50

independent runs. The blue crosses mark the results obtained

by MBSS [500x] when 0 dB Gaussian noise was involved

and the red asterisks denote the MBSS incorporating RPCA

when −20 dB sparse noise was involved, which shows that

Mode 2Mode 1

Mode 3

(a) The sources

Mode 2Mode 1

Mode 3

(b) MBSS

Mode 2Mode 1

Mode 3

(c) HOOI+BSS

Mode 2Mode 1

Mode 3

(d) TuckerALS+BSS

Fig. 5. Comparison of performances of the MBSS, HOOI+BSS and TuckerALS+BSS in the decomposition of a tensor with mixed constraints.

Very sparse noise with SNR=-20dB was added to the observations tensor. In MBSS we used 100Jn randomly sampled fibers and then we

preprocessed them by employing RPCA

11In this case the improved performance was achieved via suitable preprocessing which was relatively easy to incorporate into the MBSS approach. The

implementation of such preprocessing, however, is not so straightforward for other existing methods.
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the separation accuracy was quite stable although MBSS only

used randomly sampled fibers. By fibers sampling, MBSS can

make a good trade-off between the separation accuracy and

efficiency. This feature is quite promising for large-scale data

analysis. To justify that the favorable performance achieved

by the MBSS with the RPCA was not due to the sampled

fibers (which occasionally noise-free, since the noises were

very sparse), the MBSS procedure was repeated but without

the RPCA preprocessing procedure and results are presented

in the same figure with the cyan circles marks). From the

figure, it is evident that the RPCA played a key role to im-

prove the performance of the MBSS for data with outliers.

In summary, compared with ordinary Tucker decomposition,

carefully designed MBSS is more flexible and robust and it

is able to tackle some very challenging problems in practical

applications.

Table 2

Comparison of performances of the MBSS, HOOI+BSS and

TuckerALS+BSS in the decomposition of a tensor with mixed constraints.

Very large sparse noise with SNR = −20 dB was added. The MBSS used

the RPCA to preprocess the sampled fibers

Algorithm mSIR1 mSIR2 mSIR3 Runtime (s) Fit

MBSS 47 18 21 2.4 1.0

HOOI 2.1 2.4 1.0 63 -0.4

TuckerALS 5.1 7.7 11 58 -0.0
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Fig. 6. Mean SIRs of A
(1) obtained by the MBSS with different con-

figurations over 50 runs. The results are stable although randomly

sampled fibers were used. The MBSS without the RPCA performed

poorly, which justifies to use the RPCA

Simulation 2. In this simulation MBSS incorporating

NMF methods is applied to perform nonnegative Tucker de-

composition (NTD) of large-scale data. Three sets of non-

negative signals were chosen from the benchmarks of NM-

FLAB, see Fig. 7a-c for their waveforms. Each set consist-

ed of five signals and the sample numbers were all 1,000.

The entries of the core tensor G ∈ R
5×5×5 were drawn

from a uniform distribution, and 60% of them were random-

ly set to zero. By using such components a large data tensor

Y ∈ R
1000×1000×1000 with sparse components was construct-

ed using the Tucker model. Finally, 20 dB noise drawn from

independent uniform distributions was added to Y. For this

large data tensor, most of existing NTD algorithms such as the

HALSNTD [50] and HONMF algorithm [16] ran out of mem-

ory or their convergence was extremely slow in our computer

and thus failed to perform nonnegative Tucker decomposi-

tions. In MBSS, this time we applied the DNNMF algorithm

[51] to extract nonnegative components in each mode and

using only 60Jn (i.e., 300) fibers n = 1, 2, 3. Figure 7d-f

shows the recovered waveforms by the MBSS and (g) shows

the corresponding SIRs of each component. From the figure,

it is evident that all components were nicely recovered by

the MBSS. The averaged SIRs of the estimated components

were 21 dB, 29 dB, and 26 dB. Moreover, MBSS consumed

only 32.3 seconds and achieved a fit of 0.9192 in a typical

run. (We have used the multiplicative update rule proposed in

[52] to obtain the nonnegative core tensor). For a comparison,

TuckerALS with nonnegativity constraints consumed 2344.9

seconds to achieve a fit of 0.8132, using only one iteration.

By setting the maximum iteration number only 10, Tucker-

ALS consumed 23440 seconds and achieved a fit of 0.92.

However, the averaged SIRs of the components estimated by

TuckerALS were only 3.9, 2.4, and 2.4 dB. From these re-

sults we can conclude that the MBSS is quite competitive

with existing algorithms for large-scale nonnegative Tucker

decomposition.

Simulation 3. In this simulation we applied MBSS to

the COIL-20 images clustering [53]. The database COIL-20

consists of 1440 gray images of 20 objects (72 images per

object). Each image has been preprocessed and was with the

size of 128 × 128, which was captured from different ori-

entations of a object. We stacked these images together and

formed a tensor Y with the size of 128 × 128 × 1440. In

the first step the tensor Y was decomposed by using MBSS

with J1 = J2 = 5, J3 = 25. In MBSS, we used LRA-NMF

described in detail in [52] to extract each factor. Then we

obtained two sets of features: FM=Â(3) and

FT = Y ×1 Â(1)† ×2 Â(2)†, (25)

where the features in FM are a sort of features which can

actually be extracted by running matrix factorization, e.g.,

NMF, on the unfolding version Y(3) directly, whereas the

features in FT are tensor features as they have exploited the

Tucker structure of tensors. Then we used their two t-SNE

[54] components to visualize and cluster the images by using

the K-means method. It is well known that K-means often

gives slightly different clustering results in different runs. To

reduce the uncertainty, in each run of K-means, K-means was

replicated 5 times, each with a new of initial cluster centroid

positions (see the document for K-means included in Mat-

lab Statistics Toolbox). Then we ran K-means 100 times and

their averaged values of clustering accuracy were recorded

and compared (see [55] for the definition of clustering ac-

curacy). From our experimental results, if FM was used, the

averaged clustering accuracy was 72.57%. If FT was adopt-

ed, the averaged accuracy was increased to 79.58%, which

shows that the clustering procedure indeed benefitted from the

Tucker structure. This also shows that, although the MBSS

is based on independent matrix factorizations, it is different

from ordinary matrix factorizations because its factors actu-

ally share a special multilinear structure. This also partially

explain why tensor decompositions cannot be simply replaced

by matrix factorizations. In fact, its Tucker structure allows
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(a) The sources in mode 1 (b) The sources in mode 2 (c) The sources in mode 3

(d) The estimated sources in mode 1 (e) The estimated sources in mode 2 (f) The estimated sources in mode 3
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(g) SIRs of individual signals achieved by using the MBSS

Fig. 7. Performance of the MBSS for Nonnegative Tucker Decomposition (NTD) of a large-scale tensor with the size of 1000×1000×1000,

where the DNNMF algorithm was used to extract nonnegative components. Most source signals were nicely recovered and the runtime was

only 32 seconds. For this large-scale tensor NTD methods such as HALSNTD and HONMF ran out of memory on our computer standard PC

us to perform more complicated data analysis tasks. The above

mentioned implementation of the MBSS was also compared

with the HOOI, the TuckerALS, and the HALSNTD. The

maximum iteration number of these ALS algorithms was set

500. After the decomposition, FT defined by (25) were com-

puted and their two t-SNE components were clustered by us-

ing K-means. In clustering stage all the algorithms used the

same configuration as MBSS, which has been detailed above.

The results are shown in Table 3. Note that the HOOI did

not impose any nonnegative constraints, Tucker-ALS only im-

posed the nonnegative constraints on the loading matrices (it

currently cannot impose nonnegativity on the core tensor),

whereas the HALSNTD and the MBSS impose the full non-

negative constraints (all the loading matrices and the core ten-

sor are nonnegative). So the fits of the HALSNTD and MBSS

were slightly lower than those of the HOOI and TuckerALS.

MBSS did not use ALS iterations, however, it obtained al-

most the same fit as the HALSNTD, but much faster than the

HALSNTD and the TuckerALS (MBSS was slower than the

HOOI because the HOOI did not need to impose nonnega-

tive constraints.) The final fit and clustering accuracy reveals

that, although without ALS iterations, the MBSS is able to

provide better or similar results by consuming significantly

reduced time in comparison to ALS methods.

Table 3

Comparison of performance of 4 algorithms for the real-world application

– COIL 20 images clustering

Algorithm HOOI TuckerALS HALSNTD MBSS

Runtime(s) 13 5644 3603 45

Fit 0.69 0.69 0.67 0.66

Accuracy (%) 73 71 78 80
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Simulation 4. In this simulation the MBSS is applied to

the steady-state visual evoked potential (SSVEP) data analysis

using real EEG data. SSVEP is a periodic electrical response

over the occipital scalp areas of the brain, elicited by the repet-

itive presentation of a flickering visual stimulus. SSVEP has

the same frequency (plus higher harmonics) as the stimulus,

and can be recorded from the scalp using electroencephalog-

raphy (EEG) [56]. Based on this mechanism a SSVEP brain-

computer interface (BCI) can be designed, which typically

depends on the external visual stimuli which are in the form

of an array of light sources with different and distinct fre-

quencies [57]. SSVEP BCI can translate the frequency modu-

lation of EEG signals into computer commands, by recogniz-

ing the frequency components of the EEG signals recorded

during different stimulus presentations [58]. How to extract

and recognize SSVEP components accurately is one of the

crucial issues for SSVEP BCI. Although SSVEP is evoked by

a repetitive stimulus with relatively stationary intensity, the

spontaneous EEG signal or noise with the same frequency as

the stimulus and its harmonics, but having time-varying in-

tensity, may contaminate the SSVEP measured from the scalp

and make it an unstable signal [59]. Effective extraction of

the true SSVEP components from the EEG signals will help

in enhancing the recognition accuracy of stimulus frequency

components, thereby improving the performance of SSVEP

BCI. Here, we validate the proposed MBSS algorithm with

real EEG data recorded in a SSVEP experiment in compari-

son to the TuckerALS, the HONMF and the HALSNTD [50]

algorithms.

The EEG signals were recorded at a 250 Hz sampling

rate from eight channels P7, P3, Pz, P4, P8, O1, Oz and O2

(arranged according to the international 10–20 standard sys-

tem) by a Biosemi Active Two amplifier, with a bandpass

filtering 5–50 Hz. The EEG data were then collected from 12

stimulus trials with 4 s duration for each trial. The first six

trials correspond to 6.5 Hz flickering frequency and the re-

maining to 10.5 Hz. A complex Morlet wavelet transform was

first applied to obtain the time-frequency information from the

EEG data with the minimum frequency resolution of 0.5 Hz.

Finally, an EEG spectrum tensor with dimension of 91 fre-

quency components × 1000 sample points × 8 channels ×
12 trials was constructed.
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Fig. 8. Example 3: Visualization of two t-SNE components obtained from the feature FT extracted by using MBSS with LRA-NMF.

The averaged clustering accuracy was 79.58% over 100 runs
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In the MBSS, only 40Jn fibers were uniformly randomly

sampled and then the DNNMF algorithm was employed to

extract the latent non-negative components. Figure 9 illustra-

tes the four-way EEG spectrum tensor factorization results

upon applying the MBSS. Two components in factor A(1) ex-

plicitly represent the SSVEP frequency components consisting

of the fundamental frequency and higher harmonics, corre-

sponding to the stimulus frequencies of 6.5 Hz and 10.5 Hz.

The components of A(2) and A(3) reflect the temporal and

spatial information about the SSVEP spectrum, respectively.

The components in factor A(4) provide considerably discrim-

inative class information, which show trials 1–6 have larger

contributions on the stimulus frequency of 6.5 Hz, where-

as trials 7–12 are more related to the stimulus frequency of

10.5 Hz. We further compare the TuckerALS with nonneg-

ativity constraints, MBSS, HONMF and HALS. The maxi-

mum iteration number for each algorithm was 100. Figure 10

shows the class information obtained by each algorithm. From

the figure, it is seen that the MBSS yields much more dis-

criminative class features than the other existing algorithms.
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trials recorded from eight channels P7, P3, Pz, P4, P8, O1, Oz and O2 during 6.5 Hz and 10.5 Hz flickering visual stimulus (6 trials each).

Frequency components between 5 Hz and 50 Hz with 0.5 Hz resolution (i.e., 91 frequency bins) were analyzed and the time window length

was 4s (i.e., 1000 sample points). Each trial is represented by a 3-way tensor with dimension of 91 × 1000 × 8

a) TuckerALS b) MBSS

2 4 6 8 10 12
0

0.2

0.4

0.6

Trial

A
(4

)

 

 

a
1
(4) a

2
(4)

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

Trial

A
(4

)

 

 

a
1
(4) a

2
(4)

c) HONMF d) HALSNTD

2 4 6 8 10 12
0

0.2

0.4

0.6

Trial

A
(4

)

 

 

a
1
(4) a

2
(4)

2 4 6 8 10 12
0

0.1

0.2

0.3

Trial

A
(4

)

 

 

a
1
(4) a

2
(4)

Fig. 10. Plots of vector a
(4)
1 and a

(4)
2 of the factor matrix A

(4) = [a
(4)
1 ,a

(4)
2 ] representing class information of the SSVEP for the TuckerALS,

MBSS, HONMF and HALS algorithms. The first 6 trials correspond to the class 1 SSVEP with frequency 6.5 Hz and the next 6 trials
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discriminative features
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Their computation time and fit are shown in Table 4. It

should be noted that the MBSS needs much less computa-

tion time in comparison to the others, and achieves compa-

rable fit. The TuckerALS and the MBSS implemented here

did not impose nonnegativity constraints on the core tensor.

From the experimental results, by using the existing the DNN-

MF method, the decomposition results obtained by MBSS are

more interpretable and the such decompositions are also more

efficient than NTD methods employing ALS approach. Here,

our aim was not to show that the proposed MBSS can yield

better performance than that of other commonly used meth-

ods for SSVEP analysis, but rather to show that the MBSS is

quite promising in the real-world data analysis. Worth men-

tioning, this may also provide a novel way to analyze EEG

data. Instead of usual two-way analysis (e.g., temporal-spatial

analysis) for the EEG data, the MBSS approach attempts to

extract the SSVEP components by multiway-array factoriza-

tion from the four-way EEG spectrum tensor which integrates

time-frequency features, temporal-spatial patterns and trial-to-

trial variability. The MBSS can impose various constraints on

the data in different ways according to the corresponding char-

acteristics of the electrophysiological signals, and may provide

more intuitive interpretations for the physical meaning of the

signals, thereby assisting the follow-up signal analysis, such

as the classification or detection in BCIs.

Table 4

Comparison of performances of 4 algorithms for the steady-state visual

evoked potential (SSVEP) data analysis in terms of run time and fit

Algorithm TuckerALS MBSS HALSNTD HONMF

Runtime(s) 596 9 236 238

Fit 0.54 0.53 0.53 0.52

6. Conclusions

The existing methods for the constrained Tucker decomposi-

tions are often slow, stuck in local minima and do not provide

unique desired decompositions and therefore, the results are

difficult to interpret. In this paper, a simple approach based

on the generalized multiway blind source separation (MBSS)

is investigated. Using the MBSS approach described in detail,

the component matrices, which are the subject of our main

interest, are estimated directly by applying existing efficient

BSS methods to each unfolding matrix of the data tensor. This

approach leads to essentially unique (neglecting unavoidable

scaling and permutation ambiguities of the components) Tuck-

er decompositions with usually meaningful and physically in-

terpretable results. In other words, we have demonstrated that

by employing the MBSS approach, constrained or penalized

Tucker decompositions provide essentially unique decomposi-

tions and thus the extracted components have specific statisti-

cal or deterministic properties (e.g., statistical independence,

smoothness, sparseness and nonnegativity)12. The MBSS ap-

proach provides an attractive and efficient alternative to ex-

isting algorithms for unique tensor analysis. Note that in the

MBSS approach the specific component matrices of interest

can be extracted independently of other modes, directly from

a reduced matricized data without the need to perform a full

decomposition of the whole data tensor, e.g.,without the need

to employ ALS algorithms which may fail to perform such de-

compositions, especially for ill-conditioned, highly collinear

or noisy data. Simulations show the validity and efficiency of

the proposed method, especially for large-scale problems.

In summary, the MBSS approach can be viewed as a

very flexible and general technique for constrained or pe-

nalized tensor decompositions, which is an efficient alterna-

tive to many existing algorithms for tensor decompositions,

especially to a wide class of the ALS algorithms. The ex-

tensive computer simulations confirmed that by using the

MBSS approach, we can reduce the computing time at least

by one or two orders of magnitude by comparison with ALS

and HOOI algorithms under assumptions that some a priori

knowledge about the hidden components is available. More-

over, for experimental, real world data, the MBSS often gives

more meaningful components of hidden latent variables, with

proper physical or physiological interpretations. However, if

such kind of a priori knowledge is not available, the standard

Tucker or CP (PARAFAC) decomposition algorithms should

still be the first choices.
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Abstract. Independent Component Analysis (ICA) plays an important role in biomedical engineering. Indeed, the complexity of processes

involved in biomedicine and the lack of reference signals make this blind approach a powerful tool to extract sources of interest. However, in

practice, only few ICA algorithms such as SOBI, (extended) InfoMax and FastICA are used nowadays to process biomedical signals. In this

paper we raise the question whether other ICA methods could be better suited in terms of performance and computational complexity. We

focus on ElectroEncephaloGraphy (EEG) data denoising, and more particularly on removal of muscle artifacts from interictal epileptiform

activity. Assumptions required by ICA are discussed in such a context. Then fifteen ICA algorithms, namely JADE, CoM2, SOBI, SOBIrob,

(extended) InfoMax, PICA, two different implementations of FastICA, ERICA, SIMBEC, FOBIUMJAD, TFBSS, ICAR3, FOOBI1 and 4-

CANDHAPc are briefly described. Next they are studied in terms of performance and numerical complexity. Quantitative results are obtained

on simulated epileptic data generated with a physiologically-plausible model. These results are also illustrated on real epileptic recordings.

Key words: ICA, comparative analysis, EEG

1. Introduction

The removal of muscular artifacts from ElectroEncephalo-

Graphic (EEG) data is a crucial preprocessing step for further

analysis of EEG in the diagnosis of epilepsy from Video-EEG

recordings. Indeed, in the particular context of epilepsy, EEG

signals of interest, such as interictal spikes or ictal discharges,

may be corrupted by muscular or myogenic activity arising

from the contraction of head muscles. As already reported [1],

these artifacts are difficult to remove. This is especially due

to i) their high amplitude (possibly several times larger than

the EEG signal), ii) the large frequency range of their com-

ponents and iii) their variable topographical distribution. Due

to the complexity of the involved physiological processes and

the lack of reference signals, researchers have mostly consid-

ered Blind Source Separation (BSS) techniques to solve the

EEG denoising problem [2–6].

Among BSS approaches, Independent Component Analy-

sis (ICA) is one of the most famous, especially in biomedical

engineering [7, 8]. It was historically the first to be applied

to EEG denoising for muscular activity [1, 9, 10]. Indeed,

by assuming that EEG data can be modeled as a noisy static

mixture of mutual independent sources associated with dif-

ferent physiological phenomena, ICA is generally considered

as a powerful tool for extracting the EEG signals of interest

[11–13]. However to date, only a few ICA algorithms such as

SOBI [14, 15], (extended) InfoMax [16, 17] and FastICA [18,

ch.6] are used in practice to process biomedical signals.

In this paper, we have examined whether other ICA meth-

ods perform better or enjoy lower computational complexity,

especially for the removal of muscle artifacts from interictal

epileptiform activity. We first discuss the EEG denoising prob-

lem and the assumptions required by ICA. Second, classical

statistical tools are provided in order to understand how the

ICA concept can be implemented. Next, representative meth-

ods of two classes, including the most used ICA techniques in

signal processing, are briefly described and studied in terms of

performance and numerical complexity: techniques based on

the Differential Entropy (DE) such as (extended) InfoMax [16,

17], PICA [19] and two different implementations of FastICA

[18, ch.6] versus cumulant-based methods. Among cumulant-

based techniques, representative algorithms of three subfam-

ilies are studied: i) the techniques using only SO statistics of

the data such as SOBI [14, 15], SOBIrob [20], TFBSS [21],

ii) the algorithms based on SO and FO statistics such as JADE

[22], CoM2 [23], and iii) the methods requiring only HO sta-

tistics such as ERICA [24], SIMBEC [25], FOBIUMJAD [26,

27], ICAR3 [28, 29], FOOBI1 [30], 4-CANDHAPc [31, 32].

Quantitative results are obtained on simulated epileptic da-

ta generated with a physiologically-plausible model [33–35].

These results are also illustrated on real data recorded in a pa-

tient with epilepsy.

2. Problem formulation and assumptions

Let’s model the EEG signal recorded from N electrodes as

one realization of an N -dimensional random vector process

{x[k]}. Each random vector x[k] can then be written as the

following noisy static mixture of statistical random processes

called sources:

∗e-mail: p.comon@ieee.org
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x[k] = A(e)s(e)[k] + A(b)s(b)[k] + A(m)s(m)[k] + n[k]

x[k] = A s[k] + n[k]
(1)

where {s(e)[k]}, {s(b)[k]}, {s(m)[k]}, {n[k]} are random vec-

tor processes representing the Pe epileptic activity sources,

the Pb background activity sources, the Pm muscular activity

sources and the N -dimensional instrument noise, respectively.

The mixing matrices A(e), A(b) and A(m) model the transfer

from all possible sources of activity within the brain to scalp

electrodes.

The assumption of static linear model comes from the

mathematical formulation of the EEG/MEG forward prob-

lem. More precisely it comes from the use of the quasi-

static formulation of Maxwell’s equations, called Poisson’s

equations, in order to compute the electrical transfer between

the cortex and the scalp [36]. Indeed, the time-derivatives

of the associated electric fields are sufficiently small to be

ignored in classical Maxwell’s equations. As far as the statis-

tical properties of vector random process {s(e)[k]}, {s(b)[k]},

{s(m)[k]} and {n[k]} are concerned, we can assume that they

are independent as they correspond to different physiologi-

cal/physical phenomena. Nevertheless, such an assumption is

not valid within each vector random processes regarding its

components. In particular, the Pe epileptic activity sources of

{s(e)[k]} may be statistically mutually dependent. Eventual-

ly, the {n[k]} vector random process can be assumed to be

Gaussian as most of instrument noises.

Consequently, by using ICA, at best we can hope to iden-

tify three vector subspaces corresponding to the epileptic

sources, the muscular sources and the background sources, re-

spectively, but not exactly the Pe +Pb +Pm sources involved

in Eq. (1). Note that this subspace identification is sufficient

for the EEG denoising problem since we don’t want to ex-

actly extract the Pe epileptic sources; in fact, we just want to

remove the contribution of the muscular and background ac-

tivities from the scalp data. Indeed, once the epileptic source

subspace is identified by applying ICA to the scalp data, we

get an estimate of A(e)s(e)[k] for every time index m, say an

estimate of the denoised scalp data. Nevertheless, as shown

in Sec. 5, the estimation of the three subspace dimensions

remains a difficult issue.

3. Statistical tools and ICA methods

3.1. Statistical tools characterizing mutual independence.

Let’s recall how to characterize the statistical independence

of a set of P random signals {yp[k]}m∈N and how to use

it in order to blindly separate mixed mutually independent

sources. A random vector y=[y1, · · · , yP ]T has mutually in-

dependent components if and only if its Probability Density

Function (PDF) py can be decomposed as the product of the

P marginal PDFs, pyp
, where pyp

denotes the PDF of the p-th

component yp of y.

Then a natural way of checking whether y has indepen-

dent components is to measure a pseudo-distance between py

and
∏

p pyp
. Such a measure can be chosen among the large

class of f -divergences. If the Kullback divergence is used, we

get the Mutual Information (MI) of y [18]:

MI(y) =

∫RP

py(u) log

(
py(u)

∏P

p=1 pyp
(up)

)
du. (2)

It can be shown that the MI vanishes if and only if the P
components of y are mutually independent, and MI is strictly

positive otherwise.

Another measure based on the PDF of y is the DE of y:

S(y) = −

∫RP

py(u) log(py(u)) du = −E[log(py(y))] (3)

sometimes referred to as Shannon’s joint entropy, where E[·]
denotes the mathematical expectation. This entropy is not in-

variant by an invertible change of coordinates, but only by or-

thogonal transforms. A fundamental result in information the-

ory is that the DE can be used as a measure of non-gaussianity.

Indeed, among the random vectors having an invertible covari-

ance matrix, the Gaussian vector is the one that has the largest

entropy. Then, to obtain a measure of non-gaussianity of y that

is i) zero only for a Gaussian vector, ii) always positive and

iii) invariant by any linear invertible transformation, one often

uses a normalized version of the DE, called negentropy, and

given by [18, ch.3]:

J(y) = S(z) − S(y), (4)

where z stands for the Gaussian vector with the same mean

and covariance matrix as y. Since MI and negentropy are sim-

ply related to each other [23], estimating the negentropy al-

lows to estimate the MI. However, even if consistent estimators

of PDFs exist (e.g. Parzen estimators [37]), the computation

of integral (3) is time consuming, and often prohibitive.

A way to avoid the exact computation of the negentropy

consists in using another measure of statistical independence

that is less accurate but easier to compute. The contrast func-

tion [23, definition 5] built from the data cumulants satisfies

this condition. From now on, we shall assume that all random

variables are real. If we consider Φx(u) = E[exp(iuTx)] as

the first characteristic function of a random vector x, since

Φx(0) = 1 and Φx is continuous, then there exists an open

neighborhood of the origin, in which Ψx(u)=log(Φx(u)) can

be defined. The r-th order moments are the coefficients of the

Taylor expansion of Φx about the origin, up to a multiplicative

coefficient ir/r!. Similarly cumulants, denoted by Ci,j,··· ,ℓ,x,

are the coefficients of the second characteristic function, Ψx,

up to a multiplicative coefficient of the same form [18, ch.3].

It is noteworthy that the components of the (N × N ) well-

known covariance matrix of an N -dimensional random vector

x exactly match the Second Order (SO) cumulants of x. By

analogy, the (N2 × N2) matrix containing the Fourth Order

(FO) cumulants of x is usually called the quadricovariance
matrix.

Cumulants are more appropriate than moments for ICA

context. Indeed, cumulants enjoy two important properties.

First, if at least two components or groups of components

of x are statistically independent, then all cumulants involv-

ing these components are null. For instance, if all com-

ponents of x are mutually independent, then Ci,j,··· ,ℓ,x =
δ[i, j, · · · , ℓ] Ci,i,··· ,i,x, where the Kronecker δ[i, j, · · · , ℓ]
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equals 1 when all its arguments are equal and is null oth-

erwise. Second, if x is Gaussian, then all its Higher Order

(HO) cumulants, i.e. cumulants of order strictly greater than

two are null. So HO cumulants may be seen as a distance

to normality. Note that moments do not enjoy these two key

properties. Moments and cumulants share two other useful

properties. On the one hand, they are both symmetric arrays,

since the value of their entries does not change by permutation

of their indices. Consequently, covariance and quadricovari-

ance matrices are necessarily symmetric. On the other hand,

moments and cumulants satisfy the multi-linearity property

[38], which is illustrated in [12, equ. (5) and (6)]. In practice,

cumulants can be estimated using both the Leonov-Shiryaev

formula [39] and sample statistics [38]. More precisely, the

Leonov-Shiryaev formula allows us to relate any qth order

cumulant to moments of order lower than or equal to q. For

example, the SO and FO cumulants of any zero-mean random

vector x symmetrically distributed are given by:

Cn1,n2,x = E[xn1
xn2

]

Cn1,n2,n3,n4,x = E[xn1
xn2

xn3
xn4

] − E[xn1
xn2

]E[xn3
xn4

]

−E[xn1
xn3

]E[xn2
xn4

] − E[xn1
xn4

]E[xn2
xn3

]

And a consistent estimate of q-th order moments of any

stationary ergodic process is given by sample statistics. Hence

the above relations allow to define consistent estimates of cu-

mulants, called κ-statistics [38].

3.2. Classical ICA techniques. The InfoMax [16, 17] and

FastICA [18, ch.6] methods avoid the exact computation of

the integral given in (3). In fact, InfoMax solves the ICA

problem by maximizing the DE of the output of an invert-

ible non-linear transform of y[k]=WTx[k] with respect to W

using the natural gradient algorithm [40]. In practice, non-

linearities whose derivative are sub-Gaussian (resp. super-

Gaussian) PDFs are sufficient for sub-Gaussian (resp. super-

Gaussian) sources [16]. Regarding the deflationary implemen-

tation of FastICA, referred as to FastICAdef in the sequel, the

p-th (1≤p≤P ) source is extracted by maximizing an approxi-

mation of the negentropy J(w T

p x[k]) with respect to the (N×1)

vector wp. This maximization is achieved using an approxi-

mate Newton iteration, which actually reduces to a variable-

step gradient algorithm. To prevent all vectors wp from con-

verging to the same maximum (which would yield several

times the same source), the p-th output is decorrelated from

the previously estimated sources after every iteration using a

simple Gram-Schmidt orthogonalization. A non-deflation im-

plementation of FastICA, referred as to FastICAsym in the

following, which simultaneously extracts all sources, also ex-

ists. The joint orthogonalization is similar to that originally

proposed in [41, 42].

In order to cover a wide range of source distributions (i.e.

symmetric, assymmetric and multimodal), authors in [19] pro-

pose the Pearson-based ICA method, named PICA. This al-

gorithm solves the ICA problem by maximizing the DE via

a maximization of the likelihood of the separator W. In this

approach, the parametric Pearson model is used to model the

source distributions. Parameters of this model can be comput-

ed using the statistical moments up to the fourth order [19].

In addition to the easy and fast computation of these parame-

ters, Pearson parametric model also shows a good robustness

against outliers. Finally, either the relative gradient [43], the

natural gradient [40] or the fixed-point [44] algorithms can

be used in order to maximize the used maximum likelihood

function.

Cumulants can be used instead of non-linearities matched

to the PDFs of the sources as proposed in [24]. According to

[24], a solution to the ICA problem is nothing else than a sad-

dle point of the obtained cumulant-based DE cost function.

This is the principle of the Equivariant Robust ICA (ERICA)

algorithm [24], which uses a quasi-Newton approach to get the

saddle point. Authors show that its convergence is isotropic

and independent of the source statistics. In addition, the SIM-

BEC (SIMultaneous Blind signal Extraction using Cumulants)

algorithm proposed in [25] optimizes the maximum likelihood

criterion using a gradient algorithm on the Stiefel manifold.

This is done by resorting to a cumulant index-based objective

function and consequently no a priori on the sources densities

is required [25]. This function satisfies two important prop-

erties. First, it is real positive and its minimum value occurs

when the normalized random variables follows a Gaussian

distribution. Second, it is strictly convex with respect to the

linear combination of the independent sources. Then, SIM-

BEC solves the ICA problem by looking for the maxima of

that cumulant index-based objective function [25, Theorem 1].

The JADE [22], CoM2 [23], SOBI [14, 15], SOBIrob [20],

FOBIUMJAD [27], TFBSS [21], ICAR3 [29], FOOBI1 [30]

and 4-CANDHAPc [32] methods also perform ICA using cu-

mulants of the data [18]. SOBI, SOBIrob and TFBSS use SO

cumulants, CoM2 and JADE use both the SO and FO cumu-

lants, and FOBIUMJAD, ICAR3, FOOBI1 and 4-CANDHAPc

only use the FO cumulants of the data. Next, JADE, SOBI,

SOBIrob, TFBSS, FOBIUMJAD, ICAR3, FOOBI1 take ad-

vantage of the algebraic structure of the covariance and/or

quadricovariance matrices by reformulating the ICA problem

as a joint diagonalization problem [45, 46], while CoM2 ex-

plicitly maximizes a contrast function based on the FO cumu-

lants of the data by rooting successive polynomials. Note that

the JAD method [45] was originally used to implement the

JADE, SOBI, SOBIrob, TFBSS, FOBIUMJAD, ICAR3 and

FOOBI1 algorithms. Eventually 4-CANDHAPc makes use of

the canonical decomposition [47] of a third order array having

one unitary loading matrix. Such a decomposition is achieved

by alternating between solving the Procrustes problem [48]

and the computation of rank-one matrix approximations. Note

that both SOBI approaches and the TFBSS method jointly

diagonalize time delayed and time-frequency covariance ma-

trices of the standardized data, respectively.

In an attempt to analyze more specifically the differences

between these ICA methods, the following remarks can be

made. First of all, contrary to the other algorithms, CoM2,

along with the seven methods based on a joint diagonaliza-

tion scheme are semi-algebraic, i.e. they are based on a finite

sequence of optimization problems for which an algebraic so-
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lution is available. No particular initialization is required con-

trary to the other iterative approaches, and, in practice, they

converge to the global solution even if no theoretical global

convergence proof is yet available today. Moreover, contrary

to the other methods, FOBIUMJAD, ICAR3, FOOBI1 and 4-

CANDHAPc require that all sources have FO marginal cumu-

lants with the same sign. Unfortunately, such an assumption

is not always realistic in biomedical contexts [49]. Anoth-

er difference is the need for a spatial whitening (also called

standardization) [23, Subsec. 2.2] [18]. This preprocessing,

based on SO cumulants, is mandatory for JADE, CoM2, SO-

BI, SOBIrob, PICA, for both implementations of for FastI-

CA and TFBSS. Although it is not necessary, spatial whiten-

ing is highly recommended in InfoMax in order to improve

its speed of convergence [50]. Regarding ERICA, SIMBEC,

FOBIUMJAD, ICAR3, FOOBI1 and 4-CANDHAPc, they can

work with HO cumulants without any standardization. In such

a case, they are then asymptotically insensitive to the pres-

ence of a Gaussian noise with a non-diagonal covariance ma-

trix. Nevertheless, preliminary computer results showed that

a whitening should be used for the seven latter methods in the

context of EEG denoising. We think that such a preprocessing

forces the estimated mixing matrix to be well-conditionned

while the original one is clearly underdetermined according

to Eq. (1). Our best results were obtained for a standardization

without any reduction of dimension. It is noteworthy that con-

trary to the other whitening-based approaches, the whitening

of SOBIrob is made using non-zero delayed covariance matri-

ces. SOBIrob is then asymptotically insensitive to the presence

of a temporally white noise. Moreover, contrary to the oth-

er methods, SOBI and SOBIrob need that all sources have

different spectra. As far as TFBSS is concerned, it requires

that all sources are non-stationnary but ergodic. Eventually,

all methods except TFBSS, rely on the stationarity-ergodicity

assumption to ensure an asymptotical mean square conver-

gence of statistical estimators. Such an assumption is very

rarely fulfilled in the context of EEG signals and a consistence

analysis is difficult in the presence of such complex biomed-

ical signals. Nevertheless the good behavior of some of these

techniques on biomedical data shows that the stationnarity-

ergodicity assumption is not absolutely necessary. Regarding

the cumulant-based methods, even if sample statistics do not

estimate accurately the cumulants of the data, they still satis-

fy reasonably the basic properties enjoyed by cumulants (see

Subsec. 3.1).

4. Numerical complexity of ICA algorithms

Although the ultimate goal of comparing denoising approach-

es is to evaluate the quality of methods as reflected by the

reconstructed signals, it is also interesting to assess the nu-

merical complexity of these methods. Numerical complexity

is defined here as the number of floating point operations re-

quired to execute an algorithm (flops). A flop corresponds to

a multiplication followed by an addition. But, in practice, on-

ly the number of multiplications is considered since, most of

the time, there are about as many (and slightly more) multi-

plications as additions. In order to simplify the expressions,

the complexity is generally approximated by its asymptotic

limit, as the size of the problem tends to infinity. We shall

subsequently denote, with some small abuse of notation, the

equivalence between two strictly positive functions f and g:

f(x) = O[g(x)] or g(x) = O[f(x)] (5)

if and only if the ratio f(x)/g(x) tends to 1 as x → ∞.

In practice, knowing whether an algorithm is computationally

heavy is as important as knowing its performances in terms

of SNR. Yet, despite its importance, the numerical complexi-

ty of the ICA algorithms is poorly addressed in the literature.

This section first addresses the complexity of some elementary

mathematical operations needed by ICA algorithms. Then, the

numerical complexity of various ICA algorithms are reported

and compared to each other as a function of the number of

sources.

Many ICA algorithms use standard Eigen Value Decom-

position (EVD) or Singular Value Decomposition (SVD), for

instance when a whitening step is required to reduce the di-

mensions of the space. In addition to these decompositions,

many other elementary operations are also considered such as

solving a linear system, matrix multiplication, joint diagonal-

ization of several matrices and computation of cumulants in

the particular case of cumulant-based algorithms.

• Let A and B be two matrices of size (N×P ) and (P×N ),

respectively. Then the numerical complexity of their prod-

uct G = AB is equal to N2P flops, since each element of

G requires P flops to be computed. The latter amount can

be reduced to (N2 + N)P/2 = O[N2P/2] flops if G is

symmetric.

• The solution of a N ×N linear system via the LU decom-

position requires approximately O[4N3/3] flops.

• The numerical complexity of the SVD of A = UΛVT is

given by O[2N2P +4NP 2+14P 3/3] when it is computed

using the Golub-Reinsch algorithm [51]. This amount can

be considerably reduced to O[2N2P ] when A is tall (i.e.

N ≫P ) using Chan’s algorithm [52], known to be suitable

in such a case.

• The numerical complexity of the EVD G = L Σ LT is

O[4N3/3] flops.

As mentioned previously, all considered methods in this

paper use a whitening step. Therefore computing the numer-

ical complexity of this step is mandatory in our evaluation

study. The so-called spatial whitening of the observed da-

ta consists of applying a linear transform so that the latent

variables (sources) become as decorrelated as possible in the

new coordinate system. To do so, this linear transformation is

computed as the inverse of the square root of the EVD of the

covariance matrix of the observations, [18, ch.1].

Hence and according to Table 1, the numerical complexity

of this whitening step is equal to KN2/2 + 4N3/3 + PNK
flops, where K denotes the number of data samples. How-

ever, for the special case N ≪ K , this linear transformation

can be efficiently computed using the SVD of the data matrix

X as proposed by Chan [52]. Then, the numerical complex-
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ity of such computation is reduced to O[2KN2] flops. As a

result, when the minimal numerical complexity of the whiten-

ing step is considered, it is equal to min(KN2/2+4N3/3+
PNK+, 2KN2) flops.

Table 1

Numerical complexity of elementary operations generally used in the ICA

methods. A and B are two matrices of size (N×P ) and (P ×N ),

respectively. I and M stand for the number of executed sweeps and the

number of matrices to be jointly diagonalized, respectively. f2q(N) denotes

the number of free entries in the 2q-th order cumulant array

Numerical complexity (flops)

G = AB N2P

Lin. system solving 4N3/3

SVD of A 2N2P + 4NP 2 + 14P 3/3

EVD of A 4N3/3

JAD [45] (Symmetric case) IN(N − 1)(4NM + 17M + 4N + 75)/2

Estimation of the 2q-th (2q − 1)Kf2q(N)

order cumulants array

EVD – based whitening KN2/2 + 4N3/3 + PNK

SVD – based whitening O[2KN2]

Some ICA algorithms [14, 21, 22, 53] are based on the

joint orthogonal approximate diagonalization of a set {Gm}
of M matrices of size (N×N ). Recall that the joint orthogonal

diagonalization problem is defined as the search for a unitary

linear transformation that jointly diagonalizes the target ma-

trices Gm. A Jacobi-like algorithm such as JAD [45] is com-

monly used for joint orthogonal diagonalization. Its numerical

complexity is equal to IN(N−1)(4NM+17M+4N+75)/2
flops if the M matrices Gm are symmetric where I stands for

the number of executed sweeps.

Finally, regarding cumulant estimation, the computation of

the 2q-th order cumulant of a N -dimensional random process

requires (2q − 1)K flops where K stands for the data length.

Consequently, the number of flops required to compute the

2q-th order cumulant array exploiting all its symmetries is

then given by (2q − 1)Kf2q(N) flops where f2q(N) denotes

the number of its free entries and is given as a function of N ,

for q = 1, 2, 3, by:

f2(N) =
N2 + N

2
= O

[
N2

2

]
,

f4(N) =
1

8
N(N + 1)(N2 + N + 2) = O

[
N4

8

]
,

f6(N) =
N6

72
+

N5

12
+

13N4

72
+

N3

4
+

22N2

72
+

N

6
O

[
N6

72

]
.

Table 1 summarizes the numerical complexity of the elemen-

tary operations considered in this paper.

Based on the complexity of these elementary operations,

the numerical complexity of each of the fifteen ICA methods

we have selected is given in Table 2. Again, we insist that

a whitening procedure has been applied in all methods.

Table 2

Numerical complexity of fifteen ICA algorithms

Computational complexity

N : number of EEG electrodes, P : number of sources, iti, i ∈ {1, · · · , 12}: number of iterations in PICA, InfoMax, FastICAsym ,

FastICAdef , ERICA, SIMBEC, 4-CANDHAPc , Q: required complexity to compute the roots of a real 4-th degree polynomial by

Ferrari’s technique in CoM2, Lw , Nt, Nf , M1 and M2: smoothing window’s length, number of time bins, number of frequency bins,

number of matrices referred to the time-frequency point wherein sources are of significant energy and number of matrices among those

M1 ones with only one active source in the considered time-frequency point, respectively, in TFBSS, δωi
= 1 if i ∈ {2, · · · , 6} and

δωi
= 0 otherwise.

SOBIrob MKN2/2 + 5M2N3 − M3N3/3 + 2MN2P + MP 2N + MP 2 + (MP 2 + 4P 3/3)J1 + MP + MN2 + 2N3/3 + NP +
(3N − P )P 2/3 + IP (P − 1)(17M + 75 + 4P + 4PM)/2

SOBI min{KN2/2 + 4N3/3 + PNK,2KN2} + 4N3/3 + (M − 1)N3/2 + IP (P − 1)(17(M − 1) + 75 + 4P + 4P (M − 1))/2

TFBSS min(KN2/2 + 4N3/3 + PNK+,2KN2) + 2P log2P + P + (K + Lw + log2(Lw))NtNfP (P + 1)/2 + 2M1P 3/3 + 3T2 +
IP (P − 1)(4PM2 + 17M2 + 4P + 75)/2

PICA min(KN2/2 + 4N3/3 + PNK,2KN2) + (P 3 + (K + 1)P 2 + 3PK)it1

InfoMax min(KN2/2 + 4N3/3 + PNK,2KN2) + (P 2 + P 3 + 4P + 5KP )it2

FastICAdef min(KN2/2 + 4N3/3 + PNK,2KN2) + (2(P − 1)(P + K) + 5KP (P + 1)/2)it3

FastICAsym min(KN2/2 + 4N3/3 + PNK,2KN2) + 2N3/2 + (16P 3/3 + P 2 + 3KP 2)it4

CoM2 min(KN2/2 + 4N3/3 + PNK,2KN2) + IP 2Q/2 + min(12If4(P )P 2 + 2IP 3 + 3Kf4(P ) + KP 2, 13IKP 2/2)

JADE min(KN2/2 + 4N3/3 + PNK,2KN2) + 3Kf4(P ) + KP 2 + min(4P 6/3, 8P 3(P 2 + 3)) + IP (P − 1)(75 + 21P + 4P 2)/2

ERICA min(KN2/2+4N3/3+PNK+,2KN2)+PNT +9PN2+ 11
3

N3+N2+N +it7(PNT +5P 2T +4PT +3P 2+3P 3+P 2N)

SIMBEC min(KN2/2 + 4N3/3 + PNK+,2KN2) + N2T + 5P 2 + 9PN2 + 11
3

N3 + N2 + N + it5(PNT + δω2
(NPT + NP +

P 2N + P 3) + δω3
(2PT + NPT + NP + P 2N + P 3) + δω4

(2PT + 3NPT + 2NP 2 + P 3) + δω5
(5PT + 3NPT + NP 3 +

NP + 2P 2N + P 3) + δω6
(7PT + 5NPT + 4NP 2 + P 2N + P 3) + 12P 2 + 12P 2N + 22

3
P 3 + NP )

FOBIUMJAD min(KN2/2+4N3/3+PNK+, 2KN2)+3MLf4(N)+2N6/3+P 2(3N2−P )/3+(M −1)N6/2+IN2(N2−1){4N2(M−
1) + 17(M − 1) + 4N2 + 75}/2 + 2N3P

ICAR min(KN2/2 + 4N3/3 + PNK+,2KN2) + K(3f4(N) + 2N6/3 + P 2(3N2 − P )/3 + N2P + (8NP 2 + 11N3/3 + N2 +
N)N + N2P 2(N − 1) + IP (P − 1)(75 + 9N(N − 1) + 8PN(N − 1) + 4P ) + IN(N − 1)(4N2 + 21N + 75)/2

FOOBI1 min(KN2/2 + 4N3/3 + PNK+,2KN2) + 3Lf4(N) + 2N6/3 + P 2(3N2 − P )/3 + N2P + N2P 2 + 2P (P + 1)N4 +
min{7M3m2

3 + 11m3
3/3, 3M3m2

3}+ IP (P − 1)[4P 2 + 21P + 75]/2 + N2P (P + 1) + min{6N3P, (2N3/3 + (3N − 1)/3)P}

4-CANDHAPc min(KN2/2 + 4N3/3 + PNK+,2KN2) + 97
72

N6 + N2P 2 + (3N2P 2 + 8
3
PN3 + 10PN + 35

3
P 3 − 2

3
P )it12 + P (IN(N −

1)(8N + 90))/2
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5. Performance analysis on simulated data

Two experiments are considered in this section to evaluate

the fifteen ICA algorithms in the context of epileptic signals

(interictal spikes) corrupted by muscle artifacts. The first one

uses synthetic spike-like epileptic EEG signals generated by

realistic biomathematical models in order to quantify the per-

formance of the methods. In the second experiment, real data

are processed in order to get qualitative results. In the first ex-

periment, the behavior of ICA methods is studied as a function

of the Signal to Noise Ratio (SNR), for a fixed data length

of K = 8192 samples, which corresponds to 32 seconds. All

reported results are obtained by averaging over 50 realizations

the outputs of the performance criterion subsequently defined.

5.1. Data generation. The main purpose of this subsection

is to explain how we obtain synthetic but realistic data for

quantifying the performance of the methods. The simulated

32-channels EEG data (one observation is displayed in Fig. 1)

are generated with a spatio-temporal model developed by our

team [33–35]. In this model, EEG sources were represented

as a dipole layer distributed over the cortical surface. The

geometrical description of the cortical surface was achieved

by using a mesh made of 19626 triangles (mean surface of

4.8 mm2) obtained from the segmentation of the gray-white

matter interface from a patient 3D T1-weighted MRI. Each

triangle of the mesh was associated to an elementary current

dipole. The dipole was placed at the barycenter of the tri-

angle and oriented perpendicular to its surface. The moment

of each dipole was weighted by a coefficient proportional to

the area of the corresponding triangle. In addition, each di-

pole was assumed to correspond to a distinct cortical neuronal

population. Its time course, which represents the time-varying

dynamics of the associated population, was provided by the

output of a neuronal population model [54], in which parame-

ters can be adjusted to generate either background-like activity

or interictal-spikes. In this model the source of these epilep-

tic activities was manually delineated on the mesh as a set of

contiguous triangles. Dipoles associated with triangles with-

in the patch were assigned highly correlated interictal spike

activities (i.e. transient interictal spikes) using an appropriate

setting of coupling parameters between populations. All oth-

er dipoles of the cortical mesh were assigned a null activity.

From this setup, we built a spatio-temporal source matrix S(e)

containing the time-varying activities of all cortical epileptic

dipoles. The p-th line of this matrix contains the time-course

of the p-th dipole within the patch. According to Sec. 2, ma-

trix S(e) also represents one realization of the vector random

process {s(e)[k]} (1).

Fig. 1. Example of denoising obtained in the case of simulated data: i) noise free simulated EEG (column 1), ii) noisy EEG after adding

real muscle activity with SNR = -25 dB (column 2), iii) EEG denoised by Infomax (column 3), iv) EEG denoised by CoM2 (column 4),

and v) EEG denoised by TFBSS (column 5)
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Scalp EEG data were then generated using a realistic head

model representing the brain, the skull and the scalp [55].

From this head model, the forward problem was then numeri-

cally solved for each triangle within the patch using a bound-

ary element method (ASA, ANT, Enschede, Netherlands) to

obtain the leadfield matrix A(e) of equation (1). This mixing

matrix gives the contribution of each dipole of the patch at

the level of 32 scalp electrode positions (19-20 standard 10-

20 electrodes plus additional electrodes at FC1, FC2, FC5,

FC6, CP1, CP2, CP5, FT9, FT10, P9, P10 and POZ). The

(N × K) matrix X(e) of scalp epileptic data is thus given by

X(e) = A(e) S(e). In this paper we considered a single patch,

made of 100 contiguous triangles (5 cm2) located in the left

superior temporal gyrus, where the activities of dipoles with-

in the patch were highly correlated. In addition, for each ex-

periment and each trial, EEG muscle activity was extracted

from real 32-channel EEG data in order to generate the matrix

X(b,m) = A(b) S(b)+A(m) S(m)+N of noisy scalp background

and muscular activities, given in (1). More precisely, each tri-

al of EEG muscle activity was normalized with respect to the

channel showing the maximal power. Then, different levels of

amplitude of noisy background and muscular activities were

added to the simulated spike activities to get noisy simulated

signals with different SNR values.

5.2. Performance criterion. The performance of the fifteen

ICA methods has been evaluated by computing the following

Normalized Mean-Squared Error (NMSE):

NMSE =
N∑

n=1





∑L

ℓ=1

∑K

k=1

(
x

(e)
n [k] − x̂

(e,ℓ)
n [k]

)2

L
∑K

k=1 x
(e)
n [k]

2



 , (6)

where {x
(e)
n [k]} is the n-th row of the X(e) matrix defined in

Subsec. 5.1, {x̂
(e,ℓ)
n [k]} is the reconstructed surface EEG after

denoising from the ℓ-th run, L is the number of Monte Carlo

runs, K is the data length and N is the number of electrodes.

More particularly, the independent components extracted by

each method from the ℓ-th run are classified in a descending

order according to their respective autocorrelation values. As

the autocorrelation of muscle artifacts is relatively low with

respect to that of epileptic spikes, the independent compo-

nents representing muscle artifacts are expected to be among

the last components. In turn, components of interest are classi-

fied among the first components, which facilitates their visual

selection. Then, the signal vector {x̂
(e,ℓ)[k]} is reconstructed

by keeping only the components accounting for the sources

of interest (epileptic spikes).

5.3. Effect of SNR. The objective of this experiment is to

i) evaluate the impact of SNR on the quality of source ex-

traction and ii) to compare the numerical complexity of the

fifteen algorithms. The data length, K , is fixed to 8192 sam-

ples, the SNR values are equal to −30, −25, −20, −15, −10
and −5 dB, and the number P of sources varies, in the range

P ∈ {2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32}. For conciseness,

we display in Fig. 1 an example of EEG signals denoised by

only three methods, namely TFBSS, CoM2 and InfoMax. In

the original un-noisy EEG (Fig. 2, left), the spike-like activity

was clearly visible at electrode T3 (facing the patch), whereas

it is entirely buried in noisy data (Fig. 2, column 2). The spike

activity at electrode T3 was well reconstructed with TFBSS,

InfoMax and CoM2. However, for InfoMax and CoM2, the

diffusion of this activity on other channels was slightly differ-

ent than in original data. This difference is more visible when

the TFBSS method is considered.

Fig. 2. NMSE as a function of SNR for K = 8192 data samples taking the number P of independent components such that each method
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gives the best NMSE

Fig. 3. Numerical complexity as a function of SNR for K = 8192 data samples taking the number P of independent components such that

each method gives the best NMSE

Figures 2 and 3 show the variations of NMSE and the

numerical complexity of the fifteen methods as a function of

SNR, respectively. Note that, in the following, the NMSE and

the numerical complexity are only illustrated by choosing the

value of P yielding the best NMSE. In addition, the methods

are classified into two main categories: i) methods with clas-

sical standardization, namely JADE, CoM2, SOBI, SOBIrob,

PICA, FastICAsym, FastICAdef and TFBSS, and ii) methods

using a standardization without any reduction of dimension,

namely FOBIUMJAD, FOOBI1, ICAR3, 4-CANDHAPc, In-

foMax, ERICA and SIMBEC.

From Fig. 2, we can observe that JADE, CoM2, SOBI,

SOBIrob, PICA, FastICAsym and FastICAdef have a quasi-

similar behaviour, whatever the SNR value. FOOBI1, ICAR3

and 4-CANDHAPc are slightly less effective than the seven

previous methods, especially in the case of high SNR values

(−10 and −5 dB). Regarding the FOBIUMJAD and TFBSS

algorithms they clearly show a poorer performance than that

of the other algorithms. The SIMBEC method performs simi-

larly to InfoMax for SNR values equal or higher than −20 dB

and presents the best performance for an SNR lower than

−20 dB. The ERICA method exhibits a performance similar

to that of most of other algorithms for an SNR ranging from

−30 dB to −25 dB, but becomes less efficient as the SNR of

simulated data increases. Results obtained on methods of sec-

ond category tend to demonstrate that using a standardization

without any reduction of dimension as a preprocessing step

forces the estimated mixing matrix to be well-conditionned.

The computational complexity (Fig. 3) is calculated by

fixing the intrinsic parameters of each method according to

those chosen to compute the NMSE criterion. In general, we

can observe that, for each method, the numerical complexity

is roughly stable, whatever the SNR values. More precise-

ly, FOBIUMJAD, TFBSS and SIMBEC methods require the

largest number of calculations. These three methods are fol-

lowed by PICA, ERICA, SOBI, SOBIrob, JADE, FastICAsym

and FOOBI1. Regarding the remaining algorithms (CoM2,

FastICAdef , ICAR3, 4-CANDHAPc and InfoMax), and more

particularly CoM2, ICAR3, and InfoMax, they require a small-

er amount of calculations. These results can partially be ex-

plained by the number of independent components P need-

ed by each method to reach the best NMSE. Figure 4 indi-

cates for each trial and for three SNR values (−30, −15 and

−5 dB) the number P required by each method to obtain the

best performance. We observe that all methods of the first

category (JADE, CoM2, SOBI, SOBIrob, PICA, FastICAsym,

FastICAdef and TFBSS), ERICA, SIMBEC and InfoMax gen-

erally require the extraction of P = 32 independent com-

ponents to obtain the best performance, whereas most of

methods of second category, namely FOBIUMJAD, FOOBI1,

ICAR3 and 4-CANDHAPc need a smaller number of inde-

pendent components to reach an equivalent performance.

The NMSE and the numerical complexity calculations

of the fifteen methods indicate, in the simulated context of

epileptic signals (interictal spikes) corrupted by muscle ar-

tifacts, that: i) InfoMax generally presents the best perfor-

mance in the sense of NMSE criterion, ii) CoM2 offers the

best NMSE versus numerical complexity compromise, and

iii) FOBIUMJAD and TFBSS provide the worse results in

terms of performance and computational complexity.
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Fig. 4. Histogram of the number P of independent components required by each method to obtain the best NMSE: i) SNR equal to −30

dB (blue bar), ii) SNR equal to −15 dB (green bar), and iii) SNR equal to −5 dB (grey bar)

6. Application to real data

In this section we propose to test the feasibility of ICA al-

gorithms on real data. For conciseness, only results given by

TFBSS, CoM2 and InfoMax are shown. It is worth noting that

these three methods were marked out by their results on simu-

lated EEG data in terms of NMSE and numerical complexity

in the previous section. The three methods were applied to the

denoising of interictal spikes in a patient suffering from drug-

resistant partial epilepsy. As part of his presurgical evaluation,

this patient underwent two sessions of video-EEG monitoring,

brain Magnetic Resonance Imaging (MRI), as well as interic-

tal and ictal Single-Photon Emission Computed Tomography

(SPECT) acquisition. During video-EEG monitoring, scalp-

EEG data were acquired from 32 electrodes (19-20 standard

10-20 electrodes plus additional electrodes at FC1, FC2, FC5,

FC6, CP1, CP2, CP5, FT9, FT10, P9, P10 and POZ) at a sam-

pling frequency of 256 Hz.

These data were reviewed in order to isolate three epochs:

i) two epochs containing a clean spike (figure 5, first and sec-

ond column), and ii) one epoch including spikes hidden in

muscle activity with very high level of noise (Fig. 5, third

column). The same procedure as for simulated data was ap-

plied to reconstruct the denoised EEG signals. In addition, to

evaluate the qualitative performance of the three methods, a

source localization was performed on the two original cleaned

signals (considered as a reference), on the noisy data, as well

as on the latter data denoised by TFBSS, CoM2 and InfoMax,

respectively. The recent 4-ExSo-MUSIC algorithm [56] was

used to achieve the source localization. Figure 5 illustrates

that interictal spikes were visible at electrodes F8, T4, FC5,

and FT10 of the two epochs of clean data (columns 1 and 2),

whereas they were hidden in the noisy data (column 3). Clear-

ly, the three ICA-methods enhance the interictal spikes at F8,

T4, FC5, and FT10 electrodes and do not increase the diffu-

sion of spikes on the remaining electrodes. We also calculated

the numerical complexity of TFBSS, CoM2 and showed (in

agreement to the simulated results) that CoM2 required the

smallest amount of calculations (about 8.107 flops), InfoMax

used about 4.109 flops and TFBSS needed a larger amount of

calculations (about 2.1012 flops).

Regarding the source localization results (bottom of each

column of Fig. 5), the spikes were localized in the right anteri-

or temporal region for the first epoch of clean data (column 1)

and both in the right temporal neocortex and in the right in-

sula for the second epoch of clean data (column 2). Even if

these localizations were slightly different, they were in gen-
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Fig. 5. Denoising of real interictal spikes data: i) two noise-free interictal spikes (columns 1 and 2), ii) epoch including spikes hidden

in muscle activity with very high level of noise (column 2), iii) EEG denoised by Infomax, CoM2 and TFBSS (columns 3, 4 and 5,

respectively). The source localization results at the output of 4-ExSo-MUSIC are depicted at the bottom of each column

eral consistent with the visual interpretation of T1-weighted

MRI data and also corroborated by interictal SPECT data. For

the noisy epoch (column 3), the spike source was incorrect-

ly localized in the left temporal region. Spike data denoised

by CoM2 were localized both in the right temporal neocortex

and in the right insula in agreement with the source local-

ization obtained from the second epoch of clean data. The

localization results at the output of InfoMax and TFBSS were

quasi-similar with those obtained from the second epoch of

clean data.

The results obtained on real interictal epileptic spikes sug-

gest that choosing the appropriate ICA method for processing

actual data in the context of interictal epileptic spikes is not an

easy task. Indeed, it is not obvious to know the true epileptic

area with a perfect accuracy, since two clean epochs recorded

in the same patient can lead to slightly different source loca-

tions. Consequently, it is clearly not possible to say which ICA

method denoises better the epileptic spikes on real data, since

the source localization after each ICA-based denoising is con-

sistent with that obtained from one of both epochs of clean

data. In terms of performance, we can just say that each of our

tested ICA methods is doing its work properly, i.e. it removes

successfully the muscle artifacts without altering the interictal

epileptic spikes, and it significantly improves the quality of

the source localization. As far as the numerical complexity is

considered, CoM2 would be the most appropriate choice.

7. Conclusions

Advanced epilepsy research and diagnosis require precise in-

formation, which can be extracted from non-invasive EEG

data. However, EEG signals may be unfortunately contami-

nated by instrumental noise and various electrophysiological

artifacts, such as power line noise, broken wire contacts, oc-

ular movements and muscular activity. These types of noise

and artifacts hide physiological activities of interest. Among

all these artifacts, the muscular activity is particularly difficult

to remove. Previous investigations in the biomedical engineer-

ing context showed that ICA is an efficient approach for the

blind extraction of components of interest from a noisy mix-

ture of sources. Nevertheless, the application of ICA to the

extraction of epileptic signals in the presence of muscular

activities is still challenging; it is indeed difficult to access

a ground truth for epileptic sources in order to evaluate the

accuracy of ICA. In addition, most of the studies that have

used ICA to analyze and to process epileptic signals have

only explored a limited number of ICA algorithms, namely

InfoMax, FastICA and SOBI. These issues are addressed in

416 Bull. Pol. Ac.: Tech. 60(3) 2012

Unauthenticated | 89.67.242.59
Download Date | 5/19/13 8:24 PM



ICA-based EEG denoising: a comparative analysis of fifteen methods

this paper through the comparison of fifteen ICA algorithms,

both in terms of performance and numerical complexity. The

comparative analysis is first performed on simulated EEG da-

ta, reproducing realistic epileptic EEG signals contaminated

by muscle artifacts, in order to quantify the accuracy of the

ICA methods. CoM2 then appears as the ICA method offer-

ing the best compromise between performance and numerical

complexity, while TFBSS and FOBIUMJAD offer the worse.

The good behavior of CoM2 is next confirmed on one set of

real data. Forthcoming work will aim first at comparing even

more ICA methods, for instance by including improved ver-

sions of the techniques analyzed in [57, 58]. Second, we will

acquire dense EEG data (> 128 channels) in order to analyze

the performance of ICA methods as a function of the number

of electrodes.
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