PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioactive core material for porous load-bearing implants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
So far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential conditions for a core material are defined as: biodegradation rate "in vitro" and "in vivo" close to bone tissue in-growth rate, high compression strength and ability to form nanoporous open structure inside the material for vascularisation. Possible deposition techniques of a core material within the macropores of metallic scaffold include infiltration of titanium porous structure with polymer scaffold followed by precipitation of phosphate nanoparticles, and mixing of phosphate and polymers before deposition followed by controlled precipitation inside the pores.
Słowa kluczowe
Rocznik
Strony
25--36
Opis fizyczny
Bibliogr. 86 poz., rys., tab.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, 80-233 Gdańsk, Poland
Bibliografia
  • 1. http://www.zimmer.com/ctl?template=CP&op=global&action=1&id=33
  • 2. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651–2670.
  • 3. Zieliński A., Sobieszczyk S., Serbiński W., Seramak T., Ossowska A.: Materials design for the titanium scaffold based implant. Solid State Phenomena 183 (2012), 225-232.
  • 4. Li Z., Gu X., Lou S., Zheng Y.: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (2008), 1329-1344.
  • 5. Virtanen S.: Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science and Engineering B 176 (2011), 1600-1608.
  • 6. Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.: New trends in tissue engineering. Arthroscopy and Joint Surgery 3(3) (2007), 11-16.
  • 7. Tian H., Tang Z., Zhuang X., Chen X., Jing X.: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37 (2012), 237-280.
  • 8. Liu X., Ma X. P.: Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 32 (2004), 477-486.
  • 9. Nassif L., Sabban M.: Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials 4 (2011), 1793-1804.
  • 10. Liu C., Xia Z., Czrnuszka J. T.: Design and developement of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85 (2007), 1051-1064.
  • 11. Liu Q., Jiang L., Shi R., Zhang L.: Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Prog. Polym. Sci. 37 (2012), 715-765.
  • 12. Tran N., Webster T. J.: Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1 (2009), 336-351.
  • 13. Tudorachi N., Chiriac A. P., Lipsa R.: Biodegradable copolymers with succinimide and lactic acid units. Part I. Synthesis Possibilities. Polimery 56 (2011), 204-210.
  • 14. Jones C., Rogers S.: Combined use of titanium mesh and biocompatible osteoconductive polymer in the treatment of full thickness calvarial defects. Br. J. Oral and Maxillofacial Surg. 36 (1998), 143-145.
  • 15. Du C., Meijer G. J., van de Valk C., Haan R. E., Bezemer J. M., Hesseling S. C., Cui F. Z., Groot K., Layrolle P.: Bone growth in biomimetic apatite coated porous Polyactives 1000PEGT70PBT30 implants. Biomaterials 23 (2002), 4649-4656.
  • 16. Chang P. C., Liu B. Y., Liu C. M., Chou H. H., Ho M. H., Liu H. C., Wang D. M., Hou L. T.: Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. Part A (2007), 771-780.
  • 17. Sharma B., Elisseeff J. H.: Engineering Structurally Organized Cartilage and Bone Tissues. Ann. Biomed. Eng. 32 (2004), 148-159.
  • 18. Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis and Characterization of Photo-Cross-Linked Hydrogels Based on Biodegradable Polyphosphoesters and Poly(ethylene glycol) Copolymers. Biomacromolecules 8 (2007), 3375-3381.
  • 19. Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., LeongK. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034.
  • 20. Rai R., Tallawi M., Grigore A., Boccaccini A. R.: Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Prog. Polym. Sci. 37 (2012), 1051-1078.
  • 21. Bonzani I. C., Adhikari R., Houshyar S., Mayadunne R., Gunatillake P., Stevens M. M.: Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28 (2007), 423-433.
  • 22. Puchała P., Kucharski G., Jaremczuk B., Monkos-Jaremczuk E.: Przegląd biomateriałów na podstawie piśmiennictwa. Chirurgia stomatologiczna, Twój Przegląd Stomatologiczny 10 (2008), 28-36.
  • 23. Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 3413-3431.
  • 24. Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711.
  • 25. Zhai Y., Cui F. Z.: Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. J. Cryst. Growth 291 (2006), 202-206.
  • 26. Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828.
  • 27. Yunoki S., Ikoma T., Tsuchiya a., Monkawa A., Ohta K., Sotome S., Shinomiya K., Tanaka J.: Fabrication and Mechanical and Tissue Ingrowth Properties of Unidirectionally Porous Hydroxyapatite/Collagen Composite. J. Biomed. Mater. Res. Part B (2006), 166-173.
  • 28. Lin P. L., Fang H. W., Tseng T., Lee W. H.: Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater. Lett. 61C (2007), 3009-3013.
  • 29. Kikuchi M., Matsumoto H. N., Yamada T., Koyama Y., Takakuda K., Tanaka J.: Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25 (2004), 63-69.
  • 30. Bakos D., Soldán M., Hernández-Fuentes I.: Hydroxyapatite – collagen - hyaluronic acid composite. Biomaterials 20 (1999), 191-195.
  • 31. Jee S.S.: , Taili T. Thula, Laurie B. Gower: Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomaterialia 6 (2010), 3676-3686.
  • 32. Ge Z., Baguenard S., Lim L. Y., Wee A., Khor E.: Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25 (2004), 1049-1058.
  • 33. Zhao F., Yin Y., Lu W. W., Leong C., Zhang W., Zhang J., Zhang M., Yao K.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23 (2002), 3227-3234.
  • 34. Cai X., Tong H., Shen X., Chen W., Yan J., Hu J.: Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia 5 (2009), 2693-2703.
  • 35. Li J., Sun H., Sun D., Yao Y., Yao F., Yao K.: Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering. Carbohydr. Polym. 85 (2011), 885-894.
  • 36. Li J., Chen Y. P., Yin Y., Yao F., Yao K.: Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28 (2007), 781-790.
  • 37. Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22 (2001), 3197-3211.
  • 38. Ignjatović N., Savić V., Najman S., Plavsić M., Uskoković D.: A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22 (2001), 571-575.
  • 39. Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part I. Basic characteristics. Biomaterials 20 (1999), 859-877.
  • 40. Shikinami Y., Matsusue Y., Nakamura T.: The complete proces of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/ poly L-lactide (F-u-HA/PLLA). Biomaterials 26 (2005), 5542-5551.
  • 41. Mathieu L. M., Mueller T. L., Bourban P. E., Pioletti D. P., Muller R., Manson J. A. E.: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 905-916.
  • 42. Russias J., Saiz E., Nalla R. K., Tomsia A. P.: Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J. Mater. Sci. 41 (2006), 5127-5133.
  • 43. Xu X., Chen X., Liu A., Hong Z., Jing X.: Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposites fibres. Eur. Polym. J. 43 (2007), 3187-3196.
  • 44. Petricca S. E., Marra K. G., Kumta P. N.: Chemical synthesis of poly(lactic-co-glycolic acid) /hydroxyapatite composites for orthopaedic applications. Acta Biomater. 2 (2006), 277-286.
  • 45. Kim S. S., Ahn K. M., Park M. S., Lee J. H., Choi C. Y., Kim B. S.: A poly(lactid-co-glycolide) /hydroxyapatite composite scaffolds with anhanced osteoconductivity. J. Biomed. Mater. Res. Part A (2006), 206-215.
  • 46. Ignjatović N., Suljovrujić E., Stojanović Z., Uskoković D.: Structure and Characteristics of the Hot Pressed Hydroxyapatite/poly-L-lactide Composite. Sci. Sintering 34 (2002), 79-93.
  • 47. Aleksendrić D., Balać I., Tang C. Y., Tsui C. P., Uskoković P. S., Uskoković D. P.: Surface characterisation of PLLA polymer in HAp/PLLA biocomposite material by means of nanoindentation and artificial neural networks. Adv. Appl. Ceramics 109 (2010), 65-70.
  • 48. Cieslik M., Mertas A., Morawska-Chochół A., Sabat D., Orlicki R., Owczarek A., Król W., Cieslik T.: The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibres or hydroxyapatite in the bone tissue regeneration proces – in vitro and in vivo examinations. Int. J. Mol. Sci. 10 (2009), 3224-3234.
  • 49. Yang Y., Zhao Y., Tang G., Li H., Yuan X., Fan Y.: In vitro degradation of porous poly(L-lactide-co-glycolide) /β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab. 93 (2008), 1838-1845.
  • 50. Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.: Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A (2007), 747-756.
  • 51. Rosół P., Chłopek J., Schweder C.: Kompozyty z polimerów biostabilnych i bioresorbowalnych modyfikowane bioaktywną ceramiką. Kompozyty 5 (2005), 25-30
  • 52. Ignjatović N., Tomić S., Dakić M., Miljković M., Plavsić M., Uskoković D.: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20 (1999), 809-816.
  • 53. Tong H. W., Wang M., Lu W. W.: In vitro biological evaluation of fibrous PHBV polymer and CHA/PHBV nanocomposites scaffolds developed for tissue engineering applications. Bioceramics Developement and Applications 1 (2011), 1-3.
  • 54. Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828.
  • 55. Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7 (2011), 2769-2781.
  • 56. Juhasz J. A., Best S. M., Bonfield W.: Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci. Technol. Adv. Mater. 11 (2010), 1-7.
  • 57. Asefnejad A., Behnamghader A., Khorasani M. T., Farsadzadeh B.: Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical and mechanical characterization. Int. J. Nanomedicine 6 (2011), 93-100.
  • 58. Bigi A., Boanini E., Gazzano M., Rubini K., Torricelli P.: Nanocrystalline hydroxyapatite-polyaspartate composites. Biomedical Materials and Engineering 14 (2004), 573-579.
  • 59. Ni J., Wang M.: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng., C 20 (2002), 101-109.
  • 60. Chen L. J., Wang M.: Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 23 (2002), 2631-2639.
  • 61. Causa F., Netti P. A., Ambrosio L., Ciapetti G., Baldini N., Pagani S., Martini D., Giunti A.: Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J. Biomed. Mater. Res. Part A (2005), 151-162.
  • 62. Lee H. J., Kim S. E., Choi H. W., Kim C. W., Kim K. J., Lee S. C.: The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 43 (2007), 1602-1608.
  • 63. Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis amd characterization of phot-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 8 (2007), 3375-3381.
  • 64. Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., Leong K. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034.
  • 65. Tateishi T., Chen G., Ushida T.: Biodegradable porous scaffolds for tissue engineering. J. Artif. Organs 5 (2002), 77-83.
  • 66. Mistry A. S., Pham Q. P., Schouten C., Yeh T., Christenson E. M., Mikos A. G., Jansen J. A.: In vivo bone biocompability and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J. Biomed. Mater. Res. Part A (2009), 451-462.
  • 67. Hedberg E. L., Kroese-Deutman C., Shih C. K., Crowther R. S., Carney D. H., Mikos A. G., Jansen J. A.: Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. Part A (2005), 343-353.
  • 68. Jack K. S., Velayudhan S., Luckman P., Trau M., Grondahl L., Cooper-White J.: The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. Acta Biomater. 5 (2009), 2657-2667.
  • 69. Duan B., Wang M., Zhou W. Y., Cheung W. L., Li Z. Y., Lu W. W.: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6 (2010), 4495-4505.
  • 70. Kose G. T., Korkusuz F., Korkusuz P., Purali N., Ozkul A., Hasirci V.: Bone generation on PHBV matrices: an in vitro study. Biomaterials 24 (2003), 4999-5007.
  • 71. Chen G. Q., Wu Q.: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26 (2005), 6565-6578.
  • 72. Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Low temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials 26 (2005), 1-9.
  • 73. Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J. Mater. Sci. Materials in Medicine 16 (2005), 613-620.
  • 74. Tan Q., Zhang K., Gu S., Ren J.: Mineralization of surfactant functionalized multi-walled carbon nanotubes (MWNTs) to prepare hydroxyapatite/MWNTs nanohybrid. Appl. Surf. Sci. 255 (2009), 7036-7039.
  • 75. Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J. M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95 (2010), 2126-2146.
  • 76. Błędzki A. K., Jaszkiewicz A.: Biokompozyty na podstawie polilaktydu wzmacniane włóknami pochodzenia naturalnego. Polimery 53 (2008), 564-570.
  • 77. Muzzarelli R. A. A., Ramos V., Stanic V., Dubini B., Mattioli-Belmonte M., Tosi G., Giardino R.: Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydr. Polym. 36 (1998), 267-276.
  • 78. Ohtsuki C., Miyazaki T., Tanihara M.: Development of bioactive organic–inorganic hybrid for bone substitutes. Mater. Sci. Eng., C 22 (2002), 27-34.
  • 79. Pramanik N., Mishra D., Banerjee I., Maiti T. K., Bhargava P., Pramanik P.: Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications. International Journal of Biomaterials (2009), 1-8.
  • 80. Mozafari M., Moztarzadeh F., Rabiee M., Azami M., Maleknia S., Tahriri M., Moztarzadeh Z., Nezafati N.: Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram. Int. 36 (2010), 2431-2439.
  • 81. Nistor M. T., Chiriac A. P., Vasile C., Verestiuc L., Nita L. E.: Synthesis of hydrogels based on poly(NIPAM) inserted into collagen sponge. Colloids Surf., B 87 (2011), 382-390.
  • 82. Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711.
  • 83. Wahl D. A., Sachlos E., Liu C., Czernuszka J. T.: Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18 (2007), 201-209.
  • 84. Pielichowska K., Blazewicz S.: Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Adv. Polym. Sci. 232 (2010), 97-207.
  • 85. Rhee S. H., Seutsugu Y., Tanaka J.: Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 22 (2001), 2843-2847.
  • 86. Zhao H., Ma L., Gao Ch., Shen J.: Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polym. Adv. Technol. 19 (2008), 1590-1596.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0084-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.