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Abstract 
 

 This article presents a method to determine free vibration frequencies  of cylinder liners in marine gas engines 

based on the power method. The cylinders were treated as thin-walled tubes getting distorted because of a long term 

variable load. The assumptions for the model have been made, mathematical procedure has been shown as well as a 

description of cylinder  free vibration  types. The final description of free vibrations was related to the way in which the 

cylinder was mounted searching for a minimum free vibration frequency. 
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1. Introduction 

Determination of free vibrations of cylinder liners is a significant task at the designing stage 

and an important one at Diesel  engine operation. Cylinder vibrations induced as a result of  

interaction of the impulse force accompanying  piston strokes when the crankshaft is passing the 

Top Dead Center (TDC),  are the main cause of  cavity formation in the cylinder block cooling 

areas [4, 5]. It is valid for medium  and high  speed  engines  whose cylinders get damaged as a 

result of cavitation. 

 

2. Simplifying  assumptions for the model 

The ratio of the thickness  of a cylinder of an engine with self-ignition  to its radius fulfills the  

inequality 1,0R , which  was the basis for accepting a  cylinder liner  as a thinned-wall one that 

is  getting distorted under  variable load [1]. To determine the frequency  of  free vibrations, the 

following assumptions have been taken [6]: 

        –   cylinder material does not have mechanical hysteresis, 

–  the sum of kinetic and potential energy is constant and energy dissipation does not occur, 

– during cylinder vibrations only a continuous process of transition from one form of energy 

 into another takes place, 

         –  cylinder vibrations are generated as a result of  interactions of the impulse piston force 

            when the crankshaft is passing the Top Dead Center (TDC),       
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–  action of forces generating cylinder vibrations are asymmetrical  as the contact of the piston 

           with the cylinder wall takes place in the plane of the crankshaft  movements. 

Parameters of  liner distortion are influenced by the type of vibration generating forces  and the 

properties of the liner which are determined by the possible types of vibrations and frequency 

values accompanying them. As a consequence, the searched for vibration type will also be 

asymmetrical. In such a case, radial displacements are accompanied by those on the circumference 

tangent to the contour of the  cross-section as well as diagonal distortions  along the axis of the 

cylinder. A calculation diagram of the cylinder as well as a thin-walled liner with the discussed  

asymmetrical load  is shown in Figure 1 [6].   

 

 
Fig. 1. A calculation diagram of a cylinder as a thin-walled liner 

 

Determination of thin-walled cylinder liner vibration types  and their corresponding frequencies was 

carried out  using the power method suggested in paper [1].  A static equilibrium of the system was 

assumed there,  treating mass inertia forces as a load for the external construction. 

 

3. Mathematical description of vibrations 

With such assumptions, a single element of the surface gets displaced  in radial direction w,  

direction v and axial direction u . Then, in the central area of the cross-section of the cylinder, 

relative deformations of surface elements will take place: 
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and  displacement deformations of the central area of the cross-section  
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In relation to the cross-section of the central area of the cross-section, the following hypotheses 

were applied: on the rigidness of the liner in the circumferential direction and on the lack of 

displacements which point to 0 and 0 deformations. Such an assumption allows to find 

a relationship between  displacements in w, v and u directions which finally makes it possible to 

substitute all unknown forces and deformations with one, which significantly simplifies the 

task. 

 As a result of surface deformation,  a simultaneous change of central area curvature will take 

place : 

in the direction of generatrix   
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and  in the circumferential direction 
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Radial displacements can be presented as  a product of three  functions dependent on   x, φ    

coordinates  and on time, t:  

 

                                                          tnxtxw  sincos,,                                              (6) 

where: 

                            – frequency of liner free vibrations,  

            n = 2, 3, 4,... – natural numbers characterizing the number of half-periods in the cross- 

                                     section. 

 

To determine the unknown types of vibrations  ψ(x) and their frequencies, the  condition of  the 

minimum potential energy was applied.  Considering relations (2) and (3), circumferential and axial 

distortions have been presented in the form of following relationships:  
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The total potential energy of the system may be obtained from  the following expression : 

                                                                    
L

ГdxU
0

                                                                     (9) 

where: Г – the total potential energy of the liner per length (L) unit of the cylinder 
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In (9a) the following symbols denote: 
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D          – cylinder rigidness, characterizing cylinder wall resistance to bending, 

E                                  – modulus of elasticity of the material (Young’s modulus), 

R                                  – radius of the cylinder,  

Ρ                                   – density of the cylinder material, 

μ                                   – Poisson’s coefficient, 

 xшDm    – bending momentum in the circumferential direction, 
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           – axial tension. 

It has been assumed that external load is due to mass inertia forces whose projections  on unitary 

area of the cross-section were defined in the following way 
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  determines the potential of external forces, used 

with  a reverse sign. 

As in expression (9a) defining Г the potential of external forces with a reverse sign is used, then 

from  formula (9) the following condition emerges: 
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meaning   that at radial displacement, the equity of work performed  by  internal and external forces  

is noted when the liner is in the equilibrium state. 

The choice of thickness ш ,,   used for calculations depends on the cylinder shape. For 

cylinders whose external part of the wall is made in the form of spiral grooves as ш  wall thickness  

in the region of  protrusions should be taken and for δ wall thickness in the groove region should be 

assumed. Then, the total thickness of the reinforced liner may be defined as the sum  of the 

following form: 

                                                                     
а
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where: 

           a  –   spiral step;  шf  –  the area of the cross-section of the protrusion. 

For cylinders with smooth walls and collars ш  is equal to the corresponding wall thickness defined 

according to the generally used relationship: 
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where: 

           1d  – collar thickness;              
1

2

a

a
 ; 

           1a  – external radius of the cylinder; 2a  – cylinder radius in the collar region. 

δ refers to the wall thickness at the end of the cylinder (generally denoted as d  in the applied 

methodology – formula 12) and the total thickness of the liner is determined taking into 

consideration all non-uniformities of the whole thickness of  cylinder walls 
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where: fшi – is the cross-section area of  particular parts with defined wall thickness (supportive belt, 

dredging, scarf etc). 

 

4. Problem solving method 

Relying on the condition of the minimum potential energy of the system, radial displacements ψ(х), 

which were used to determine all deformations, internal forces and external loads can be determined  

using Euler equation for the variation problem: 
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Then from relations (14) – (17) a uniform differential equation of the fourth order was obtained: 
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whose solution is function (19): 

 

                             xikCxkshCxikCxkchCx 24132211 sincos                                   (19)                              

 

describing  the type of vibrations along the x axis, where : 

С1, С2, С3, С4 – integral constants dependent on the limiting conditions, 

           21 , kk  – roots of the fourth order characteristic equation,  
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If for the actual construction of the cylinder, the following conditions are fulfilled: 

 

             0b ;                                     ba                          and                     bkk  2
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 Then, it can be assumed that  

                                                                     kikk  21 . 

 

Substituting relation (19), which describes ψ(x), free frequency of the cylinder has been obtained in 

the following form: 
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5. Summary 

In  contrast to the generally used methods of calculations applied for determination of  free 

vibration of  cylinders [1, 6, 7], relation (20) is a general one, valid for all limiting ways of cylinder 

mountings and its application has no  restrictions  regarding different mounting of the cylinder in 

the block, not only at the edges but also with intermediate support. 

Taking into account limiting conditions, referring to the way in which the cylinder is mounted in the 

block, leads to a series of exact values km. Limiting conditions for the ψ (x) function  constitute a 

system of  equations versus  С1, С2, С3, С4 constants, whose solution uncommonly exists when the 

system determinant equals zero. 

In the simple cases of symmetrical mounting at the edges of the cylinder,  trigonometric 

equations, whose known roots are expressed with the π number,  can be obtained. Taking into 

consideration the actual mounting of the cylinder in the block, set up both at the edges as well as 

between them, leads to more complicated limiting conditions.  

Then, it is indispensable to determine the km value from the condition that the determinant is equal 

to zero for limiting conditions, and the expression for calculating free vibrations of the cylinder is 

given in the from: 
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where: m – the number of half- periods  along the x axis. The first type of vibrations m=1 is the one 

without knots  with the minimum frequency where:  ωm. Each vibration type in the axial direction is 

characterized by  m half-terms along the x axis and  has one value in the circumferential direction, 

nm, at which the frequency of vibrations will be minimal [2, 3]. 
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