

Jerzy Merkisz, Jaroslaw Markowski, Jacek Pielecha, Ireneusz Pielecha

Poznan University of Technology, Institute of Internal Combustion Engines and Transport ul. Piotrowo 3, 60-965 Poznan, Poland tel.: +48 61 665 2207, fax: +48 61 665 2204 e-mail: {jerzy.merkisz, jaroslaw.markowski, jacek.pielecha, ireneusz.pielecha}@put.poznan.pl

Abstract

This paper presents the results of the tests on the exhaust emissions from a turboprop engine used for the propulsion of PZL SW-4 Puszczyk helicopter. The tests were conducted in pre-flight conditions. The paper presents the test results and their analysis that enabled the determining of the values of the brake-specific emissions at selected load points. The load values were determined based on the courses of the parameters recorded by an on-board flight recorder during the pre-flight test. The obtained values of the brake-specific emissions as assigned to the engine load conditions were used for the evaluation of the emissions of the helicopter under actual operating conditions. The load conditions of the powertrain were determined based on the analysis of the operating data as obtained from several archival flight records. The analysis enabled an obtainment of the values of the exhaust emissions generated during the actual operating conditions of the helicopter.

Keywords: emissions, turbine engine, helicopter, pre-flight test

1. Introduction

The increasing demand for transport tasks dedicated to helicopters is directly translated into growth of the number of such types of aircraft in use. This, in turn, is significant for the condition of the natural environment. The emission of carbon dioxide and particulate matter is still a severe threat and, at the same, time an obstacle in the development of contemporary combustion engines - turboprop engines in particular [1, 2, 4, 5]. The current provisions relating to the effects of the aviation transport upon the environment as introduced by the Environmental Protection Agency and International Civil Aviation Organization mainly relate to noise and exhaust emissions with particular consideration of nitric oxides [3, 6]. They relate to turboprop, turbofan and jet engines and include requirements for apparatuses and stationary testing procedures depending on the operating conditions of an engine [6]. Turboprop engines used in helicopters are classified with respect to all standards, but no limits of exhaust emission are determined. Therefore, an attempt was made to evaluate the exhaust emissions generated by engines of PZL SW-4 Puszczyk helicopter in its actual operating conditions.

2. Methodology

Object of tests

The tests on the exhaust emissions generated by a helicopter turboprop engine were performed on PZL SW-4 Puszczyk (Fig. 1) with its powertrain composed of two turboshaft Rolls-Royce 250-C20R/2 engines (Fig. 2). The exhaust emission tests were performed in real operating conditions of the helicopter during a pre-flight test. PZL SW-4 Puszczyk was fitted with an on-board flight parameter recorder that not only records such parameters as flight velocity and altitude, but also the position angles of the helicopter and the operating parameters of the engines.

Fig. 1. PZL SW-4 Puszczyk helicopter

Fig. 2. Turboshaft Rolls-Royce 250-C20R/2 engines

The basic technical parameters have been shown in Table 1.

Tab. 1. Basic technical parameters of the Rolls-Royce 250-C20R/2 engine

Name	Symbol	Range	Unit of measure
1	2	3	4
Power output	N _e	380	kW
Unit fuel consumption	g _e	0.465	g/kWh
Mass flow rate	G_p	1.7	kg/s
Compression rate	П	7.9	_
Engine weight	m	78	kg

The exhaust emission tests were preformed in the actual conditions of the helicopter operation during a preflight test. The PZL SW-4 Puszczyk helicopter is fitted with a flight recorder whose purpose is recording airspeed, altitude and helicopter angles as well as the operating parameters of the engines.

Measurements equipment

The exhaust emissions were measured in the actual operating conditions of the helicopter. This approach required installing a system of exhaust gases uptake in the helicopter near its exhaust in such a manner as to make it possible to operate the helicopter (Fig. 3).

Fig. 3. Placement of the exhaust gases probe

A duct feeding the exhaust gas sample to the analyzer was conducted through an open window in the loading space of the helicopter. Semtech-DS portable analyzer manufactured by Sensors was used for the measurement of the concentration of the exhaust components (Fig. 4).

Fig. 4. View of the exhaust emission analyzer

The analyzer enabled a measurement of the concentration of carbon monoxide, hydrocarbons, nitric oxides and carbon dioxide. The exhaust gases were introduced into the analyzer through a measuring probe that maintained the temperature of 191°C and then were filtered out of the particulate matter (only in the case of diesel engines) and the concentration of hydrocarbons was measured through a flame ionization detector. Next, the exhaust was cooled down to the temperature of 4° C and the concentrations of the following were measured respectively NO_x, CO, CO₂ and oxygen [2]. The analyzer measures the concentration of carbon monoxide, hydrocarbons, nitric oxides and carbon dioxide as per the characteristics given in Table 2.

Parameter	Measurement method	Accuracy	
1	2	3	
СО	NDIR, measurement range 0–10%	±3% of the measurement range	
НС	FID, measurement range 0–10,000 ppm	±2.5% of the measurement range	
NO _x	NDUV, measurement range 0–3000 ppm	±3% of the measurement range	
CO ₂	NDIR, measurement range 0–20%	±3% of the measurement range	
O ₂	Electrochemical, measurement range 0–20%	±1% of the measurement range	
Exhaust flow rate	Mass flow rate	±2.5% of the measurement range	
Exhaust temperature	Up to 700°C	±1% of the measurement range	
Warm up time	900 s		
Response time	$T_{90} < 1 \ s$		

Tab. 2. Characteristics of Semtech DS (a portable exhaust emission analyzer) [6]

3. Emission tests results and analysis

During the pre-flight test of the helicopter, concentrations of the exhaust components were measured. The results of the measurements of the concentration of CO_2 , CO, HC, NO_x were presented as measurement values for several minutes' measurement initiating from the moment before engine startup until several seconds following the stopping of the engines. The test course was additionally recorded by the flight parameter recorder. The obtained courses were compared and, then, used for further analysis of instantaneous values of engine loads (Fig. 5).

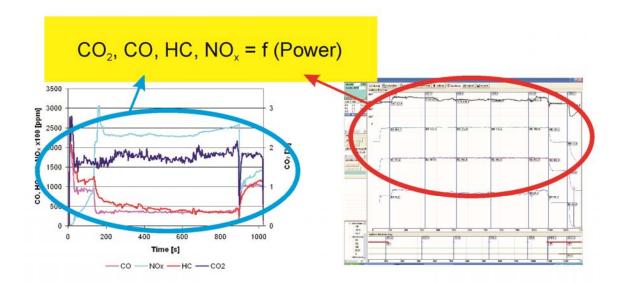


Fig. 5. The compared courses of concentration of individual exhaust components and the course of the operating parameters of engines as recorded by the flight parameter recorder during the pre-flight test of the helicopter

On the basis of the recorded course, engine loads in time were determined. During the preflight test engines work under approximately 10% of maximum load for 7% time of the test, under the loads ranging from 60.65% of the maximum load for approximately 13% of time and under 95 % of maximum load for approximately 80% of the test (Fig. 6).

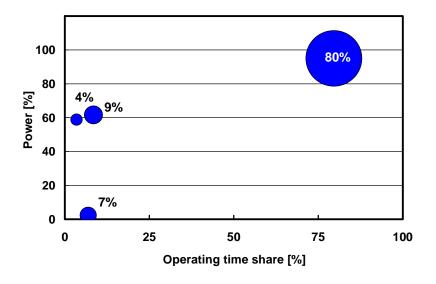
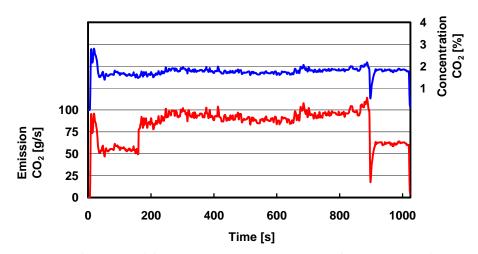



Fig. 6. Test operating time share of the powertrain of the PZL SW-4 Puszczyk helicopter during the preflight test

On the basis of the available flow characteristics of Rolls-Royce 250-C20R/2 engine and the measured instantaneous value of air excess coefficient, exhaust gas rate in individual points of load was measured.

The obtained values of instantaneous exhaust flow rate, multiplied by the measured instantaneous value of the concentration of a given exhaust component yielded the instantaneous emission of the individual exhaust components during the test (Fig. 7-10).

Fig. 7. *The course of the instantaneous concentration and emission rate of CO*₂ *in the exhaust gases during the test*

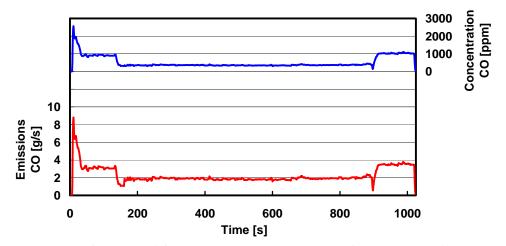


Fig. 8. The course of the instantaneous concentration and emission rate of CO in the exhaust gases during the test

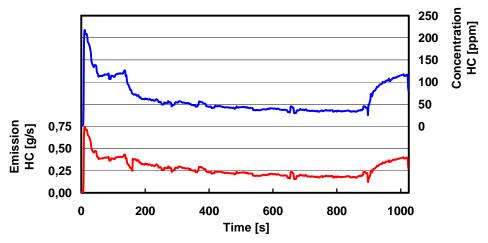


Fig. 9. The course of the instantaneous concentration and emission rate of HC in the exhaust gases during the test

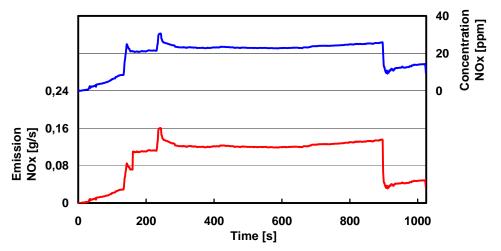


Fig. 10. The course of the instantaneous concentration and emission rate of NO_x in the exhaust gases during the test

The obtained values of the exhaust gas concentration as multiplied by the instantaneous value of concentration of an exhaust component resulted in instantaneous values of emission rate of particular exhaust gas components during the performed test. The obtained courses of instantaneous value of the concentration of the individual exhaust gas components were compared to the instantaneous values of the engine loads recorded by the on-board flight parameter recorder. The comparison resulted in obtaining of values of unit-based emissions of exhaust gas components for individual points of engine loads (Fig. 11). It results from the obtained data that the largest ecological nuisance is the stage of starting up and warming of the engine under small loads. With an increase of load, one may observe a decrease in the values of brake-specific emissions. It is particularly the case in the emission of carbon monoxide and hydrocarbons. The values of unit-based emission of carbon dioxide and nitric oxides change insignificantly for $75 \div 95\%$ of the maximum engine load.

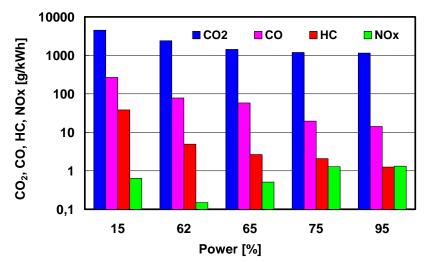


Fig. 11. The values of brake-specific emissions generated by the powertrain of PZL SW-4 Puszczyk helicopter during the pre-flight test and for individual load values

The values of unit-based exhaust emissions as determined for individual engine loads may be multiplied by the percentage share of time of engine load during the pre-flight test performed. This allows obtaining values of unit-based exhaust emissions constituting individual characteristics for a given engine in a given pre-flight test (Fig. 12).

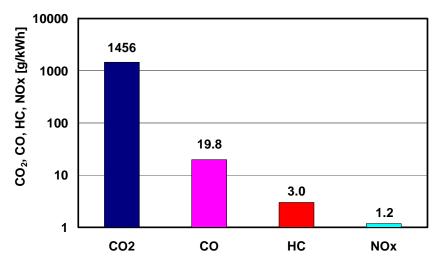


Fig. 12. The values of unit-based exhaust emissions as generated by the powertrain of the helicopter during the pre-flight test

The unit emission of CO_2 was approximately 1456 g/kWh, CO approximately 19.8 g/kWh, HC approximately 3 g/kWh and NO_x approximately 1.2 g/kWh.

4. Conclusions

The conducted exhaust emissions tests from PZL SW-4 Puszczyk during the pre-flight test enabled an obtainment of data on the concentration of exhaust gas components in the exhaust gases of a helicopter turboprop engine. A further analysis of the results as compared to the engine operating parameters provided values of brake-specific emissions generated by the powertrain for individual engine loads. Based on the obtained values, actual exhaust emissions from the powertrain of the helicopter during the pre-flight were determined. The here-discussed evaluation constitutes a part of a larger work aimed at the evaluation of negative impact of operation of transport helicopters upon the natural environment. The work is also connected with the development of a universal test facilitating the determination of exhaust emissions generated by helicopters.

References

- [1] Antas, S., *Determination of performance and parameters for turboprop and turboshaft engine for modification through change of gas temperature before turbine*, Combustion Engines, 4/2006, pp. 34-43, Dec. 2006.
- [2] Dzierzanowski, P., Kordzinski, Otys, W.J., Szczecinski, S., Wiatrek, R., *Turbinowe silniki smiglowe i smiglowcowe*, Wydawnictwa Komunikacji i Lacznosci, Warszawa 1985.
- [3] Kotlarz, W., *Turbine Driving Systems as Pollution Sources at Military Airports*, Air Forces Academy, Dęblin 2004.
- [4] Peitsch, D., Propelling the future the meaning of Aare VISION 2050 for the future development of propulsion systems for aircraft, Combustion Engines, 4/2011, pp. 3-13, Dec. 2011.
- [5] Merkisz, J., Markowski, J., Pielecha, J., Babiak, M., *Emission Measurements of the AI-*14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 'Wilga' Plane, SAE Paper 2010-01-1563.
- [6] Anex 16 Environmental Protection, Vol. II Aircraft Engine Emissions, ICAO.