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Abstract 
The paper provides justification for the necessity to define reliability of diagnosing systems (SDG) in order to 
develop a diagnosis on state of any technical mechanism being a diagnosed system (SDN). It has been shown 
that the knowledge of SDG reliability enables defining diagnosis reliability. It has been assumed that the 
diagnosis reliability can be defined as a diagnosis property which specifies the degree of recognizing by a 
diagnosing system (SDG) the actual state of the diagnosed system (SDN) which may be any mechanism, and the 
conditional probability p(S*/K*) of occurrence (existence) of state S* of the mechanism (SDN) as a diagnosis 
measure provided that at a specified reliability of SDG, the vector K* of values of diagnostic parameters implied 
by the state, is observed. The probability that SDG is in the state of ability during diagnostic tests and the 
following diagnostic inferences leading to development of a diagnosis about the SDN state, has been accepted as 
a measure of SDG reliability. The attention has been paid that in order to make an operating decision not only 
the knowledge of a diagnosis reliability is required, but also the knowledge of consequences (c) of making a 
given decision that belongs to a set of decisions possible to be made in a given operating situation. The Bayesian 
statistical decision theory has been proposed to apply for making operating decisions. Herein, it has been used 
the simplest decision model which assumes that there can only be made one from among two possible operating 
decisions: 1) perform, first of all, a suitable preventive service for the mechanism (SDN) under operation, in 
order to renew its functional properties and then start executing the task, 2) start executing the ordered task 
without prior performance of a preventive maintenance of the mechanism. The theory of semi-Markov processes 
has been used for defining the SDG reliability, that enabled to develop a SDG reliability model in the form of a 
seven-state (continuous-time discrete-state) semi-Markov process of changes of SDG states. 
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1. Introduction 
 

A reasonable operation of mechanisms requires making the right decisions that are 
appropriate for the current operating situation. An opportunity to make right decisions exists 
when the reliability of the diagnosis on the technical state of the operated mechanisms is 
known and it is possible to identify the consequences (c) of making the given decision [1, 2, 
3, 4]. An assessment of the reliability of the diagnosis on the technical condition of each 
mechanism (as SDN - diagnosed system) is possible only if the reliability of the appropriate 
diagnosing system (SDG) is known, which is necessary to develop a diagnosis on the 
technical state of SDN. The probability of the system’s correct work during tests and 



diagnostic inference that results in a diagnosis, can be taken as a measure of SDG reliability. 
This probability can be determined by applying the theory of semi-Markov processes. The 
requirement to determine the mentioned probability can be justified wider by describing the 
importance of the SDG reliability for making operating decisions. 
 
2. An importance of reliability of diagnosing systems for making operating decisions 

during operation of the mechanisms 
 

Knowledge of the reliability of a diagnosing system (SDG) is indispensable to 
define the reliability of the diagnosis on technical state of a diagnosed system 
(mechanism) (SDN), which can be understood differently [2, 4, 5]. However, 
diagnosis reliability can be regarded: 

 in descriptive sense, as a diagnosis property that defines the degree of recognizing by a 
diagnosing system (SDG) an actual technical state of the diagnosed system (SDN), 
which may be any mechanism, and 

 in evaluative sense, as a diagnosis property determined by a conditional probability 
p(S*/K*) of occurrence (existence) of state S* of the mechanism (SDN), provided that 
the vector K* of values of diagnostic parameters being implied by the state, is 
observed. 

Knowing reliability of the diagnosis on technical state of the mechanism (SDN), during 
the phase of its operation, one of the following decisions can be made: 

 decision d1 – perform, first of all, suitable preventive service for the SDN, in order to 
renew its functional properties which are indispensable to execute the task ZD, and 
then start executing the task at the time defined by the orderer, 

 decision d2 – start executing the ordered task ZD without prior performance of the 
preventive maintenance of the mechanism, which in a formal term can be defined as 
follows:  

ZD = , W, t     (1) 
 

where:  – correct operation (work) of SDN, W – conditions under which SDN should 
properly operate (work), t – time of performing the task ZD. 
 

However, making a rational operating decision in the phase of operation of the 
mechanism, requires the knowledge of not only the diagnosis reliability but also the 
consequences (c) of making the decision. In this situation, for making decisions it is 
convenient to apply the Bayesian statistical decision theory [1, 3, 4].  

Execution of ZD is possible when SDN (mechanism) is in state of ability (s1
*). The task 

cannot be performed if SDN is in state of disability (s2
*). However, the mentioned states (s1

* 
and s2

*) that belong to the set of states S* = {s1
*, s2

*}should be such defined that their 
occurrences are the mutually exclusive events, so such events whose the probabilities of 
occurrence satisfy the equations: P(s1

*  s2
*) = P(s1

*) + P(s2
*) and P(s1

*  s2
*) = 0. 

Selection of the best decision from among these two (d1 or d2) when during performance 
of the task ZD a possibility of occurring the states si

*(i = 1, 2) exists, requires to take into 
account the following decision criteria: 

 expected value of consequences E(cd1) corresponding to decision d1; 
 expected value of consequences E(cd2) corresponding to decision d2. 
After estimation of the expected values E(cdk), where k = 1, 2; the following logic (rule) 

of making decisions should be applied [1]: from among decisions dk(k = 1, 2) this one should  
be selected which the highest value of E(cdk) is assigned to. 



Estimation of these expected values is possible when reliability or rightness of the 
diagnosis is identified [4, 5]. In order to avoid misunderstanding it should be assumed that the 
diagnosis reliability is determined only when the probability that SDG is in state of ability is 
less than unity. Whereas, rightness of diagnosis is identified only when the probability that 
SDG is in state of ability is equal to unity [4, 5]. 

Usefulness of the diagnosis reliability p(S*/K*) can be presented on the example of the 
decision situation of which the dendrite is demonstrated in Fig. 1. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1. Exemplary dendrite of the operating decisions for any mechanism: 
p(s1

*k1
*) – probability of existence of state s1 under the condition  that the vector k1

* of diagnostic parameters is 
observed,  p(s2

*k2
*) – probability of existence of state s2 under the condition  that the vector k2

* of diagnostic 
parameters is observed, s1

* – state of ability of the mechanism, s2
* – state of disability of the mechanism, c(d1, 

s1
*) – consequence resulting from decision d1 for state s1

* of the mechanism, c(d1, s2
*) – consequence resulting 

from decision d1 for state s2
* of the mechanism, c(d2, s1

*) – consequence resulting from decision d2 for state s1
* of 

the mechanism, c(d2, s2
*) – consequence resulting from decision d2 for state s2

* of the mechanism. 
 

The decision dendrite in Fig. 1 shows that the expected values E(cd1) and E(cd2) can be 
derived from the relationships: 
 

E(cd1) = p(s1
* k1

*)c(d1, s1
*) + p(s2

*
  k2

*)c(d1, s2
*) 

E(cd2) = p(s1
* k1

*)c(d2, s1
*) + p(s2

*
  k2

*)c(d2, s2
*)   (2) 

 
Therefore, in compliance with the presented rule for making decisions, if E(cd1) > 

E(cd2) the decision which should be made is d1 and inversely – if E(cd1) < E(cd2) the 
decision which should be made is d2. 

From the considerations it follows that for making operating decisions we need among 
others the knowledge of diagnosis  reliability p(S*/K*) about the technical state of the 
mechanism whose the measure can be the probability of occurrence of the state s1

* or s2
*.  

In extreme cases: 
 reliable (fully reliable) diagnosis can be assigned with a digit 1, which should be  

considered that the diagnosis is entirely reliable, i.e. right; 
 unreliable diagnosis can be assigned with a digit 0, which should be considered 

that the diagnosis is entirely unreliable, i.e. wrong. 
 

In the operating practice, such an alternative assessment of diagnosis reliability, 
consisting in assigning it with a digit 1 or 0, is insufficient. Therefore, the papers [4, 5] 
present a proposal to determine diagnosis reliability in the form of the probability P(S*/K*), 

p(s2
*k2

*) 

d1 

d2 p(s1
*k1

*)

c(d1, s1
*) 

c(d2, s1
*) 

c(d2, s2
*) E(c/d2)

E(c/d1) 

p(s1
*k1

*)

p(s2
*k2

*)

c(d1, s2
*) 



where S* – state of mechanism, K* – vector of values of diagnostic parameters characteristic 
for state S*. The papers provide an assumption that in the evaluative sense the diagnosis 
reliability as a diagnosis property, can be determined by the values of important in certain 
cases indexes characterizing the degree of recognizing by SDG the state of SDN 
(mechanism), so this may be understood as the conditional probability P(S*/K*), logical 
probability PL(S*) or statistical probability PS(S

*) [9]. 
The  paper [4, 5] submits a proposal of formulas as the measures of the diagnosis 

reliability and accuracy. For deriving the formulas there were applied: a conditional 
probability formula for the events A1, S*, K* and a continuous-time discrete-state semi-
Markov model of the process of using SDG {W(t): t  0} [4, 5], where: 

 
 A1 – event representing a proper operation of SDG during development of the diagnosis, 
 S* – event representing an occurrence of state S* of the mechanism (SDN – diagnosed 

system),  
 K* – event indicating an occurrence of a particular vector K* of values of diagnostic 

parameters as a result of occurring the state S* of SDN. 
In consequence, the formula defining probability P(S*/K*) as a measure of diagnosis 

reliability, is obtained in the form [4, 5] as follows:  
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For a reliable SDG (so such SDG for which P(A1) = 1 exists) the formula (3) takes the 

form as follows: 
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which is the measure of the diagnosis accuracy [4, 5].  

From the formula (4) it follows that even when SDG works reliably during diagnostic 
tests and then during diagnostic inference until the diagnosis on SDN technical state is 
developed, the diagnosis cannot be certain. This results from the fact that while developing a 
diagnosis (inference) about the state S* of SDN, the statement K*, so the statement that just 
this and not any other vector (K*, in this case) of values of diagnostic parameters was 
recorded by SDG, is regarded to be completely certain premise. While the sentence S*, saying 
that just this and not any other state (S*, in this case) of SDN, is an inference developed on the 
basis of the statement K*, which is the result of completed non-deductive inference. 
Therefore, identification of the technical state of SDN consists in developing the hypothesis: 
SDN is in state S* because vector K* of the values of diagnostic parameters is observed. In 
this case this inference is a reductive inference, so proceeds according to the following 
scheme [9]: 
            (5) 
where: 

 K*  completely certain premise, 
 S*  inference developed on basis of the sentence K*. 

 
In the case, when the sentence S* is an inference being developed on the basis of the 

sentence K* (regarded as a completely certain premise) in the process of inferring, it can be 
assumed that the sentence S* is made probable by the sentence K*. The measure for this can 

K*, S*    K*       S*



be a conditional probability defined by the formula (3) if there is no certainty that SDG works 
reliably or by the formula (4) if SDG works reliably during diagnostic tests and inference.  

In general, there is no certainty that SDG works reliably during tests and diagnostic 
inference [8, 10] and therefore, it is important to determine the probability of its correct 
operation. For this reason, it is necessary to identify the reliability of SDG. This requires  
consideration of at least a two-state reliability model for SDG, thus an assumption that this 
can find in only two mutually exclusive states, i.e. state of ability (s0) and state of disability 
( 0s ). However, due to the fact that in diagnostics of mechanisms (SDN) there are applied 

different methods of testing their states (and hence different diagnosing devices), it becomes 
necessary to distinguish instead of one state 0s , a number of states of disability sj (j = 1, 2, 

…., n) of SDG, which occur in consequence of failures in diagnosing devices that belong to 
SDG used along with the taken methods for testing the SDN state. The further considerations 
on the reliability of SDG include the states of disability sj, j = 1, 2, …, 6 (sj  0s ), where j – 

type of SDG disability resulting from a failure of its subsystem SDGj, where the indexes 

6,1j  denote e.g.: 1 – subsystem for testing the acoustic emission, 2 – subsystem for visual 
(endoscopic) testing, 3 – subsystem for thermal (temperature, pressure) testing, 4 – subsystem 
for vibration testing (for NVH tests), 5 – subsystem for wear testing by employing the method 
of radionuclide X-ray fluorescence (XRF), 6 – subsystem for thermographic testing (for 
infrared thermal image analysis). 

To determine the SDG reliability, at such approach to testing the reliability of SDG, we 
can apply the theory of semi-Markov processes (of continuous-time discrete-state type) and 
develop a seven-state semi-Markov model of the process of changes of SDG states (state of 

ability s0 and states of disability sj, 6,1j ), which is necessary to derive the formula for the 
probability of staying the SDG in state of ability (s0), so in a state which is indispensable to 
develop a reliable diagnosis. 
 
3. A semi-Markov model of the process of changes of states for diagnosing systems 
 

Application of the semi-Markov model of the process of changes of states for a 
diagnosing system (SDG) enables consideration of its preventive maintenance service [2, 8, 
10] and, therefore, consideration of SDG reliability state s0, i.e. state of ability and states of 

disability sj ( 6,1j ) of its particular subsystems SDGj, j = 1, 2, …, 6. 
The semi-Markov model of the process of changes of reliability states for a the 

diagnosing system (SDG) can therefore, be considered as a semi-Markov process {W(t): t  
0} with the set of states S = si; i = 0, 1, ... ,6. The interpretation of the states si  S(i = 0, 1, ... 
,6) is as follows: s0 – state of ability of SDG and simultaneously of all its subsystems SDGj, 

( 6,1j ), s1 – state of disability of the subsystem SDG1 for acoustic emission testing, s2 – 
state of disability of the subsystem SDG2 for visual (endoscopic) testing, s3 – state of 
disability of the subsystem SDG3 for thermal (temperature, pressure) testing, s4 – state of 
disability of the subsystem SDG4 for vibration (NVH) testing, s5 – state of disability of the 
subsystem SDG5 for wear testing by using X-ray radionuclide fluorescence method (XRF), s6 
– state of disability of the subsystem SDG6 for thermographic testing (infrared thermal image 
analysis). Changes of the listed states si (i = 0, 1, ..., 6) proceed at subsequent times tn (n  N), 

where at time t0 = 0 a diagnosing system (SDG) is in state s
0
. The state s

0
 lasts until any of the 

distinguished subsystems SDGj ( 6,1j ) fails. The states sj(i = 1, ..., 6) last as long as the 
failed subsystem SDGj is renovated or replaced by another one in case the renovation is found 
unprofitable. It can be assumed that the state of SDG at time tn+1 and the time interval of 



duration of the state achieved at time t
n
 do not depend on the states occurred at times t0, t1, ..., 

tn-1 or the time intervals of their duration. Thus, the process {W(t): t  0} of changes of states 
si; i = 0, 1, ... ,6 is a semi-Markov process [4, 6]. The graph of changes of the reliability states 

sj of SDG ( 6,0i ) is shown in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Graph of changes of reliability states si; i = 0, 1, ... ,6 for a diagnosing system SDG for a crank-piston 
mechanism of crosshead main engine: 

s0 – state of full ability of SDG, s1 – state of disability of the subsystem SDG for acoustic emission testing, s2 – 
state of disability of the subsystem SDG for visual (endoscopic) testing, s3 – state of disability of the subsystem 

SDG for thermal (temperature, pressure) testing, s4 – state of disability of the subsystem SDG for vibration 
(NVH) testing; s5 – state of disability of the subsystem SDG for wear testing by using X-ray radionuclide 

fluorescence method (XRF); s6 – state of disability of the subsystem SDG for thermographic testing (infrared 
thermal image analysis); T0 – time of duration of the state of ability s0; T1 – time of duration of the state of 

disability s1, T2 – time of duration of the state of disability s2; T3 – time of duration of the state of disability s3; T4 
– time of duration of the state of disability s4; T5 – time of duration of the state of disability s5; T6 – time of 

duration of the state of disability s6; 
P0 – probability of staying SDG in state s0, P1 – probability of staying SDG in state s1, P2 – probability of staying 

SDG in state s2, P3 – probability of staying SDG in state s3, P4 – probability of staying SDG in state s4, P5 – 
probability of staying SDG in state s5, 

P6 – probability of staying SDG in state s6,   pij – probability of transition from state si  
to state sj; Tij – time of duration of state si providing that the subsequent state is sj; i,j = 0,1,2,…, 6; i  j. 

 
The initial distribution of the process {W(t): t  0} is as follows:  
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whereas its matrix function (in accordance with the graph shown in Fig. 2) is of the following 
form: 
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The matrix function Q(t) is a model of changes of the reliability states of SDG. 
Non-zero elements Qij(t) of the matrix Q(t) depend on the distributions of random 

variables which are the time intervals of staying the process {W(t): t  0} in states si  S(i = 0, 
1,..., 6). The elements are the probabilities of transition of the mentioned process from state si 
to state sj (si, sj  S) at time not longer than t, defined as follows:  
 

Q
ij
(t) = P{W(n+1) = sj, n+1  n < t|W(n) = si} = pijFij(t)   (8)  

where: 
pij – probability of transition at one step in homogeneous Markov chain; 
pij = P{Y(n+1) = sj|Y(n) = si = lim ( )

t
ijQ t


; 

Fij(t)- distribution function for the random variable Tij, denoting the time of duration of 
state si of the process {W(t): t  0}, providing that the subsequent state of the process is sj.  

 
Due to the matrix (7) of the process {W(t): t  0} is a stochastic matrix, the matrix of the 

probability of transition of the Markov chain embedded in this process is as follows [6]: 
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The process {W(t): t  0} is irreducible [6, 7] and random variables Tij have finite positive 

expected values. Therefore, its limiting distribution  
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is of the following form [6]:  
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Probabilities j(j = 0, 1,..., 6) in the formula (11) are the limiting probabilities of the 
embedded Markov chain. 

Determination of the limiting distribution (11) requires solution of the following system 
of equations: 
 

[0, 1, 2, 3, 4, 5, 6] = [0, 1, 2, 3 4, 5, 6]P  
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 As a result of solving the system of equations (12) by using the formula (11) the 

following relationships can be obtained:  
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The probability P0 is a limiting probability that in longer period of operation (in theory at 

t  ) SDG is in state s0. This probability is therefore a coefficient of the system’s technical 
readiness for diagnosing. However, the probabilities Pj(j = 1, 2,..., 6) are limiting probabilities 
of existing states sj  S of the system at t  , i.e. the probabilities of being its subsystems 
SDGj (j = 1, 2, …, 6) in states of disability, so also the whole SDG, due to its serial reliability 
structure. 

An exemplary realization of the process {W(t): t  0}, showing an occurrence of the 
reliability states of SDG during operation, is presented in Fig. 3. 

For the operating practice of SDG adopted to identify the states of the diagnosed systems 
(SDN), important is also one-dimensional distribution of the process {W(t): t  0}, whose 
elements are the functions Pk(t) denoting the probability that at (any) time t the process is in 
state sk  S(k = 0, 1, ..., 6). This momentary distribution can be calculated by using the initial 
distribution (6) of the process {W(t): t  0} and the functions  Pij(t) being the probabilities of 
transition of the process from state si to state sj (si  S, sj  S, i  j; i, j = 0, 1, ..., 6). 
Calculation of the transition probabilities requires the knowledge of the functions Fij(t), i.e. 
distribution functions of random variables Tij(i = j; i, j = 0, 1, ..., 6), which are also needed to 
determine the functions Qij(t) (with interpretation (8)), which are the elements of the matrix 
Q(t) defined by the relationship (7). Therefore, there are needed the proper reliability tests of 
SDG.  
 
 
 
 



 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Exemplary realization of the process {W(t): t  0} for a diagnosing system (SDG): 
s0 – state of full ability of SDG, s1 – state of disability of the subsystem SDG for acoustic emission testing, s2 – 
state of disability of the subsystem SDG for visual (endoscopic) testing, s3 – state of disability of the subsystem 

SDG for thermal (temperature, pressure) testing, s4 – state of disability of the subsystem SDG for vibration 
testing (NVH testing) 

  
 

The presented reliability description of diagnosing systems (SDG) can, of course, be 
developed by specifying as many reliability states as they are essential for the operating 
practice of the systems, i.e. needed by a user of a given type of systems to ensure their rational 
operation.  

 
4. Remarks and conclusions  
 

Application of the theory of semi-Markov processes for testing the reliability of 
diagnosing systems (SDG) enables to define not only the probability of staying the systems of 

this type in state of ability (s0) and in particular states of disability sj( 6,1j ), but also the 
reliability of the diagnosis on the technical state of the diagnosed systems (SDN), which can 
be any mechanisms. 

Semi-Markov processes are more and more often used for solving various problems in the 
field of reliability, mass service and diagnostics of mechanisms.  

Application of the processes in the practice requires to satisfy the two conditions: 
– collection of the relevant mathematical statistics; 
– development of a semi-Markov model of changes of reliability states of a system with  

a small number of states and a simple (in the mathematical sense) matrix function Q(t). 
The second condition is particularly important for calculation of the momentary 

distribution Pij(t), (i  j; i, j = 0, 1, ..., 6) for the process of changes of reliability states {W(t): t 
 0} for a diagnosing system (SDG). As known, this distribution can be calculated when we 
know the initial distribution of the process {W(t): t  0} and the functions  Qij(t) of the matrix 

Q(t), which are the conditional probabilities of transition of the process from one reliability 
state to another. Calculation of the transition probabilities Pij(t) consists in solving a system of 
Volterra integral equations of the second kind (system of equations of convolution type) [6], 
in which the known quantities are the elements Qij(t) of the matrix function Q(t) for the 

studied process {W(t): t  0}. When the number of states of the process is small and/or its 
matrix function is simple, the system can be solved by applying a Laplace–Stieltjes transform. 
However, if the number of states of this process is high or when at small number of states its 
matrix function is very complex, it is possible to obtain only an approximate solution for the 
system of equations. The solution (numeric) does not provide possibility to determine the 
probabilities of occurring the particular states of the process, when time of its duration has a 

w(t) 

 t 

 s1 

 s0 

 s2 

 s4 

 s3 



large value (in theory, when t  ). From the theory of semi-Markov processes it results that 
in case of ergodic semi-Markov processes, the probabilities tend over time to strictly defined 
(constant) numbers. The numbers are called limiting probabilities of the states, and the 
sequence of the numbers makes a limiting distribution (13).  

The limiting distribution enables to define a coefficient of a diagnosing system readiness 
for proper operation and developing a reliable diagnosis at any time [2, 6].  

 
 
5. References 
 
[1] Benjamin J.R., Cornell C.A.: Probability, Statistics, and Decision for Civil Engineers. 

Wyd. polskie Rachunek prawdopodobieństwa, statystyka matematyczna i teoria decyzji 
dla inżynierów. WNT, Warszawa 1977. 

[2] Girtler J.: Diagnostyka jako warunek sterowania eksploatacją okrętowych silników 
spalinowych. Studia Nr 28. WSM, Szczecin 1997. 

[3] Girtler J.: Zastosowanie bayesowskiej statystycznej teorii decyzji do sterowania procesem 
eksploatacji urządzeń. Materiały XXII Zimowej Szkoły Niezawodności nt. 
Wartościowanie niezawodnościowe w procesach realizacji zadań technologicznych w 
ujęciu logistycznym. SPE KBM PAN, Szczyrk 1994, s.5562. 

[4] Girtler J.: Wiarygodność diagnozy a podejmowanie decyzji eksploatacyjnych. Materiały 
Kongresu Diagnostyki Technicznej KDT’96 TII. Zespół Diagnostyki SPE KBM PAN, 
PTDT, IMP PAN w Gdańsku, Politechnika Śląska w Gliwicach, Politechnika Poznańska, 
Gdańsk 1996, s.271276. 

[5] Girtler J.: Probabilistic measures of a diagnosis’ likelihood about the technical state of 
transport means. Archives of Transport, vol. 11, iss. 3-4. Polish Academy of Sciences. 
Committee of Transport, pp.3342. 

[6] Grabski F.: Teoria semi-markowskich procesów eksploatacji obiektów technicznych. 
Zeszyty Naukowe AMW, nr 75 A, Gdynia 1982. 

[7] Grabski F.: Semi-markowskie modele niezawodności i eksploatacji. PAN. IBS, Warszawa 
2002. 

[8] Niziński S., Michalski R.: Diagnostyka obiektów technicznych. Wyd. ITE, Radom 2002. 
[9] Pabis S.: Metodologia i metody nauk empirycznych. PWN, Warszawa 1985. 
[10] Żółtowski B.: Podstawy diagnostyki maszyn. Wyd. ATR w Bydgoszczy, Bydgoszcz 

1996 
 
 
 


