PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Godunov-type methods for two-component magnetohydrodynamic equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with a numerical solutions of two-component magnetohydrodynamic equations. While a hyperbolic system of wave equations admits a shock solution as a result of the selenoidality condition the MHD equations are not strictly hyperbolic. As a consequence of that these equations require special numerical treatment. An application of a resulting numerical code to a problem of solar wind interaction with the ionosphere of the planet Venus is presented.
Rocznik
Strony
343--348
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
autor
  • Faculty of Physics, Mathematics and Informatics, UMCS, 10 Radziszewskiego St., 20-031 Lublin, Poland, kmur@kft.umcs.lublin.pl
Bibliografia
  • [1] E.R. Priest, Solar Magnetohydrodynamics, Reidel Publishing Company, Dordrecht, 1982.
  • [2] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009.
  • [3] S.K. Godunov, “A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations”, Math. Sb. 47, 271–306 (1959).
  • [4] J.M. Stone and M.L. Norman, “ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests”, Astrophys. J. Suppl. Ser. 80 (2), 753–790 (1992).
  • [5] K. Murawski and R.S. Steinolfson, “Numerical modeling of the solar wind interaction with Venus”, Planet. Space Sci. 44, 243–252 (1996).
  • [6] P.R. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys. 54, 115–173 (1984).
  • [7] P.L. Roe and D.S. Balsara, “Notes on the eigensystem of magnetohydrodynamics”, SIAM J. Appl. Math. 56, 57–67 (1996).
  • [8] A.A. Barmin, A.G. Kulikovskiy, and N.V. Pogorelov, “Shockcapturing approach and non-evolutionary solutions in magnetohydrodynamics”, J. Comp. Phys. 126 (1), 77–90 (1996).
  • [9] T Tanaka and K. Murawski, “Three dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation”, J. Geophys. Res. 102 (19), 805–819, 821 (1997).
  • [10] T. Tanaka, “Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields”, J. Comp. Phys. 111 (2), 381–390 (1994).
  • [11] J.L. Phillips and D.J. McComas, “The magnetosheath and magnetotail of Venus”, Space Sci. Rev. 55, 1–80 (1991).
  • [12] T.L. Zhang, J.G. Luhmann, and C.T. Russell, “The magnetic barrier at Venus”, J. Geophys. Res. 96 (11), 145–153 (1991).
  • [13] K.K. Khurana and M.G. Kivelson, “A variable cross-section model of the bow shock of Venus”, J. Geophys. Res. 99 (A5), 8505–8512 (1994).
  • [14] K.K. Mahajan, H.G. Mayr, L.H. Brace, and P.A. Cloutier, “On the lower altitude limit of the Venusian ionopause”, Geophys. Res. Lett. 16, 759–762 (1989).
  • [15] L.H. Brace, W.T. Kasprzak, H.A. Taylor, R.F. Theis, C.T. Russell, A. Barnes, J.D. Mihalov, and D.M. Hunten, “The ionotail of Venus – its configuration and evidence for ion escape”, J. Geophys. Res. 92, 15–26 (1987).
  • [16] T. Tanaka, “Effects of decreasing ionospheric pressure and the plasma mixing recess on the solar wind interaction with nonmagnetized planets”, Adv. Space Res. 26, 1577–1586 (2000).
  • [17] T.E. Cravens, A.J. Kliore, J.U. Kozyra, and A.F. Nagy, “The ionospheric peak on the Venus dayside”, J. Geophys. Res. 86, 11323–11329 (1981).
  • [18] J.L. Phillips, J.G. Luhmann, and C.T. Russell, “Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere”, J. Geophys. Res. 89, 10676–10684 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.