PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical evaluation of fractional differ-integrals of some periodical functions via the IMT transformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents accuracy evaluation of the numerical calculations of the fractional differ-integrals. We focus on applying the Riemann-Liouville formula, on singularity, which appears while using classical form of this formula. To calculate it we use the Newton-Cotes’ Quadrature and additionally two Gaussian rules. Using this different approach to the IMT Transformation, transforming the “core” integrand of Riemann-Liouville formula, we point the possible way of increasing the accuracy of the calculations. We use our own tools and compare obtained results with, where possible, exact values, where not – values obtained using an excellent method of integration incorporated in Mathematica.
Rocznik
Strony
285--292
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical, Electronic, Computer and Control Engineering, Computer Engineering Institute, Lodz University of Technology, 18/22 Stefanowskiego St., 90-537 Łódź, Poland, dbrzezinski@kis.p.lodz.pl
Bibliografia
  • [1] A.Oustaloup, O. Cois, and L. Lelay, Repr´esentation et Identification par Mod`ele non Entire, Hermes, Paris, 2005.
  • [2] J. Sabatier, O.P. Agrawal, and T.J.A. Machado, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, 2007.
  • [3] Y.Q. Chen, B.M. Vinagre, and I. Podlubny, “Continued fraction expansion approaches to discretizing fractional order derivatives – an expository review”, Nonlinear Dynamics 38, 155– 170 (2004).
  • [4] P. Ostalczyk, “The non-integer difference of the discrete-time function and its application to the control system synthesis”, Int. J. System Science 31 (12), 1551–1561 (2000).
  • [5] P. Ostalczyk, “Stability analysis of a discrete-time system with a variable-, fractional-order controller”, Bull. Pol. Ac.: Tech. 58 (4), 613–619 (2010).
  • [6] M.Buslowicz, “Robust stability of positive discrete-time linear systems of fractional order”, Bull. Pol. Ac.: Tech. 58 (4), 567–572 (2010).
  • [7] K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order”, Electronic Trans. on Numerical Analysis 5, 1–6 (1977).
  • [8] C.H. Lubich, “Discretized fractional calculus”, SIAM J.Mathematica1 Analysis 17, 704–719 (1986).
  • [9] P. Ostalczyk, “The time-varying fractional order difference equations”, Proc. Design Eng. Technical Conf. & Computers and Information 1, 1–9 (1986).
  • [10] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.
  • [11] R.L. Burden and J.D. Faires, Numerical Analysis, Brooks/Cole Cengage Learning, Boston, 2003.
  • [12] R.A. Krommer and Ch.W. Ueberhuber, Computational Integration, SIAM, Philadelphia, 1986.
  • [13] A.H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 1966.
  • [14] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice Hall, New Jersey, 1989.
  • [15] P.K. Kythe and M.R. Sch¨aferkotter, Handbook of Computational Methods for Integration, Chapman & Hall/CRC, Ohio, 2005.
  • [16] H. Takahashi and M. Mori, “Quadrature formulas obtained by variable transformation”, Numer. Math. 21, 201–216 (1973).
  • [17] D. Brzeziński and P. Ostalczyk, “Numerical evaluation of fractional differ-integral of some elementary functions via IMT transformation”, Proc. 14th Int. Conf. on System Modelling and Control, SMC 1, CD-ROM (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.