PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation of nonlinear tangential contact behaviour of a spherical particle under varying loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical and numerical study of the tangential contact of a spherical particle under varying combined normal-tangential loading is presented. The normal and tangential contact is described by the Hertz and regularized Coulomb laws. This study is focused on the analysis of the tangential displacement of the particle’s contact point under variable normal force and reevaluation of the procedures for calculation of the tangential force. The incremental displacement-driven and force-driven constitutive relationships are developed. The importance of an adequate numerical treatment of the tangential component of the contact force is shown for the slide mode, and the recommendations for its evaluation are proposed. The performance of the algorithm is demonstrated by solving the problem of the oblique impact of the spherical particle on the wall. The suggested methodology allows us to analyse the elastic and sliding effects of the tangential interaction more precisely than existing methodologies. Besides, the issue of the direction of the tangential force, when the Coulomb limit is reached, was reconsidered in one-dimensional case by taking three versions of the unit direction vector, which are based on the tangential elastic displacement, tangential stick force, and tangential relative velocity of the contact point of the particle.
Rocznik
Strony
265--278
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Laboratory of Numerical Modelling, Vilnius Gediminas Technical University, 11 Saul˙etekio Ave., 10223 Vilnius, Lithuania, Darius.Zabulionis@vgtu.lt
Bibliografia
  • [1] P.A. Cundall and O.D.L. Strack, “A discrete numerical model for granular assemblies”, Geotechnique 29, 47–65 (1979).
  • [2] R.D. Mindlin, “Compliance of elastic bodies in contact”, J. Appl. Mechanics 16, 259–268 (1949).
  • [3] R.D. Mindlin and H. Deresiewicz, “Elastic spheres in contact under varying oblique forces”, J. Appl. Mechanics 20, 327–344 (1953).
  • [4] A. Dˇziugys and B.J. Peters, “An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers”, Granular Material 3, 231–266 (2001).
  • [5] Y. Zhou, R.Y. Yang, and A.B. Yu, “Discrete particle simulation of particulate systems: theoretical developments”, Chemical Eng. Science 62, 3378–3392 (2007).
  • [6] H. Kruggel-Emden, S. Wirtz, and V. Scherer, “Applicable contact force models for the discrete element method: the single particle perspective”, J Pressure Vessel Technology 131, 2024001–2024011 (2009).
  • [7] C. Thornton, S.J. Cummins, and P.W. Cleary, “An investigation of the comparative behaviour of alternative contact force models during elastic collisions”, Powder Technology 210 (3), 189–197 (2011).
  • [8] X. Zhang and L. Vu-Quoc, “An accurate elasto-plastic frictional tangential force-displacement model for granular-flow simulations: displacement-driven formulation”, J Computational Physics 225 (1), 730–752 (2007).
  • [9] L. Vu-Quoc and X. Zhang, “An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations”, Mechanics of Materials 31, 235–269 (1999).
  • [10] H. Kruggel-Emden, S. Wirtz, and V. Scherer, “A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behaviour”, Chemical Eng. Sci. 63, 1523–1541 (2008).
  • [11] H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer, “Review and extension of normal force models for the discrete element method”, Powder Technology 171, 157–173 (2006).
  • [12] O.R. Walton and R.L. Braun, “Viscosity, granular temperature and stress calculations for shearing assemblies of inelastic, frictional disks”, J Rheology 30, 949–980 (1986).
  • [13] Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technology 71, 239–250 (1992).
  • [14] A. Di Renzo and F.P. Di Maio, “Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes”, Chemical Eng. Sci. 59, 525–541 (2004).
  • [15] F.P. Di Maio and A. Di Renzo, “Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model”, Chemical Eng. Sci. 59 (16), 3461–3475 (2004).
  • [16] N.V. Brilliantov, F. Spahn, J. Hertzsch, and T. Poeschel, “Model for collisions in granular gases”, Physical Review E 53 (5), 5382–5392 (1996).
  • [17] P. Van Liedekerke, E. Tijskens, E. Dintwa, J. Anthonis, and H. Ramon, “A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations”, Powder Technology 170, 71–85 (2006).
  • [18] H.P. Zhu and A.B. Yu, “The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow”, Physica A 325, 347–360 (2003).
  • [19] P.K. Haff and R.S. Anderson, “Grain scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation”, Sedimentology 40, 175–198 (1993).
  • [20] E. O˜nate and J. Rojek, “Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems”, Comput. Meth. Appl. Mech. Eng. 193, 3087–3128 (2004).
  • [21] S. Luding, “Shear flow modelling of cohesive and frictional fine powder”, Powder Technology 158, 45–501 (2005).
  • [22] J. Argyris, “An excursion into large rotations”, Comput. Meth. Appl. Mech. Eng. 32, 85–155 (1982).
  • [23] T. Poschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms, Springer, Berlin, 2010.
  • [24] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, London, 2008.
  • [25] R. Michalowski and Z. Mróz, “Associated and non-associated sliding rules in contact friction problems”, Archives of Mechanics 30 (3), 259–276 (1978), (in Polish).
  • [26] P. Wriggers, Computational Contact Mechanics, Wiley, London, 2002.
  • [27] G.A. Kohring, “Studies of diffusional mixing in rotating drums via computer simulations”, J. Phys. I France 5, 1551–1561 (1995).
  • [28] J.S. Leszczynski, “A discrete model of a two-particle contact applied to cohesive granular materials”, Granular Matter 5 (2), 91–98 (2003).
  • [29] D. Zhang and W.J. Whiten, “A new calculation method for particle motion in tangential direction in discrete element simulations”, Powder Technology 102 (3), 235–243 (1999).
  • [30] H. Kruggel-Emden, S. Wirtz, and V. Scherer, “An analytical solution of different configuration of the linear viscoelastic normal and frictional-elastic tangential contact model”, Chemical Eng. Sci. 62, 6914–6926 (2007).
  • [31] H. Kruggel-Emden, M. Sturm, S. Wirtz, and V. Scherer, “Selection of an appropriate time integration scheme for the discrete element method (DEM)”, Computers & Chemical Eng. 32 (10), 2263–2279 (2008).
  • [32] G. Jasion, J. Shrimptona, M. Danbya, and K. Takedab. “Performance of numerical integrators on tangential motion of DEM within implicit flow solvers”, Computers & Chemical Eng 35 (11), 2218–2226 (2011).
  • [33] D. Frenkel and B. Smit, Understanding Molecular Simulation from Algorithm to Applications, Academic Press, New York, 2001.
  • [34] J.M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley-Interscience, London, 1992.
  • [35] P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, and R.D. Skeel, “Computational molecular dynamics: challenges, methods, ideas”, 2nd Proc. Int. Symposium on Algorithms for Macromolecular Modelling 1, CD-ROM (1998).
  • [36] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons Ltd, London, 2008.
  • [37] B.J. Min, “Anomalous behavior of gear’s predictor-corrector algorithm in a molecular dynamics simulation of amorphous silicon”, J. Korean Physical Society 57 (5), 1153–1157 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.