PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Configurational forces for growth and shape regulations in morphogenesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Morphogenetic theories investigate the mechanisms of creation and regulation of definite biological forms in living organisms. The incredible diversity of shapes and sizes is generated through a barely unknown coordination of biochemical processes occurring at molecular levels. Such a crosstalk not only defines the rules of a robust scheme of matter differentiation, but it also has the capacity to adapt with respect to some variations of the environmental conditions. In this work, we propose a continuum model of growth and mass transport for biological materials during morphogenetic processes. Using the theory of configurational forces, we define the thermomechanical bases for understanding how both the mechanical and the biochemical states can orchestrate growth. The model is successfully applied to describe the morphogen-driven growth control in the imaginal wing disc of Drosophila melanogaster.
Twórcy
autor
autor
autor
  • Universit´e Pierre et Marie Curie – Paris 6, Institut Jean le Rond d’Alembert, UMR CNRS 7190, 4 place Jussieu, case 162, 75005 Paris, France, gerard.maugin@upmc.fr
Bibliografia
  • [1] D’Arcy W. Thompson, On Growth and form, Cambridge Univ. Press, Cambridge, 1917.
  • [2] C.H. Waddington, “The distribution of the evocator in the unfertilized egg”, J. Exp. Biol. 15, 382–384 (1938).
  • [3] A.M. Turing, “The chemical basis of morphogenesis”, Proc. R. Soc. Lond. Biol. Sci. B 237, 37–72 (1952).
  • [4] L. Wolpert, “Positional information and the spatial pattern of cellular differentiation”, J. Theor. Biol. 25, 1–47 (1969).
  • [5] L. Wolpert, “Positional information and patterning revisited”, J. Theor. Biol. 269, 359–365 (2011).
  • [6] S.J. Day and P.A. Lawrence, “Measuring dimensions: the regulation of size and shape”, Development 127, 2977–2987 (2000).
  • [7] T. Lecuit and L. Le Goff, “Orchestrating size and shape during morphogenesis”, Nature 450, 189–192 (2007).
  • [8] A.J. Zhu and M.P. Scott, “Incredible journey: how do developmental signals travel through tissue?”, Gene Dev. 18, 1985–1992 (2004).
  • [9] T. Lecuit and P.F. Lenne, “Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis”, Nature Rev. Mol. Cell. Biol. 8, 633–644 (2007).
  • [10] G.A. Maugin, Configurational Forces: Thermomechanics, Physics, Mathemathics and Numerics, CRC Press Taylor and Francis, Boca Raton, 2010.
  • [11] P. Ciarletta and G.A. Maugin, “Elements of a finite strain gradient thermomechanical theory for material growth and remodelling”, Int. J. Nonlinear Mech. 46, 1341–1346 (2011).
  • [12] P. Ciarletta, D. Ambrosi, and G.A. Maugin, “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodelling”, J. Mech. Phys. Solids 60 (3), 432–450 (2012).
  • [13] L. Le Goff and T. Lecuit, “Gradient scaling and growth”, Science 331, 1141–1142 (2011).
  • [14] O. Wartlick, P. Mumcu, F. Julicher, and M. Gonzalez-Gaitan, “Understanding morphogenetic growth control – lessons from flies”, Nature Rev. Mol. Cell. Biol. 12, 594–604 (2011).
  • [15] O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum, F. Julicher, and M. Gonzalez-Gaitan, “Dynamics of Ddp signalling and proliferation control”, Science 331, 1154–1159 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.