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Abstract. Morphogenetic theories investigate the mechanisms of creation and regulation of definite biological forms in living organisms.

The incredible diversity of shapes and sizes is generated through a barely unknown coordination of biochemical processes occurring at

molecular levels. Such a crosstalk not only defines the rules of a robust scheme of matter differentiation, but it also has the capacity to adapt

with respect to some variations of the environmental conditions. In this work, we propose a continuum model of growth and mass transport

for biological materials during morphogenetic processes. Using the theory of configurational forces, we define the thermomechanical bases

for understanding how both the mechanical and the biochemical states can orchestrate growth. The model is successfully applied to describe

the morphogen-driven growth control in the imaginal wing disc of Drosophila melanogaster.
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1. Introduction

The first mechanistic treatment of the interrelations between

growth and form is due to D’Arcy Thompson, who sought

to explain the generation of organic forms from a structural

optimization principle under given physical forces [1]. This

approach practically identifies form as Goethe’s concept of

’Gestalt’, being described like a mathematical mapping of

the same organic structure. A radical conceptual change later

arose thanks to the combined development of genetics and em-

bryology. In 1938, Waddington used the term ’evocator’ to in-

dicate a biochemical substance enabling certain potential abil-

ities in the embryonic tissue [2]. This concept was implicitly

employed by Turing for the definition of ’morphogens’, intend-

ed as diffusible secreted substances acting like evocators of

shape [3]. In Turing’s idea, morphogens behave like activators

and inhibitors in chemical reactions, directing the formation of

complex patterns from homogeneous states through the cou-

pling between their reaction-diffusion mechanisms. Wolpert

later simplified this concept of reacting substances, introduc-

ing the seminal idea that cells acquire positional informa-

tion by reading the local signalling level of diffusive mor-

phogens [4]. In the so-called ’French flag’ model, he proposed

that target cells might use this information as a paradigm

to give rise to spatial patterns, activating different transcrip-

tion genes depending on given concentration thresholds of the

morphogens. This apparently simplistic model was later con-

firmed by experimental observations on the early Drosophila

embryo, where the concentration gradient of the protein Bi-

coid (a transcription factor) drives an antero-posterior differ-

entiation in three separated domains, scaling with embryo size

like the colours in a flag. Although successful and long time

accepted as a universal mechanism, this patterning model is

based on two controversial issues, as one can question if mor-

phogens can actually freely diffuse, and if their concentration

field is sufficiently stable. Wolpert himself later argued that

passive diffusion might not be a reliable mechanism inside

cells [5]. Morphogenetic movements are rather determined

by other transport mechanisms, such as planar transcytosis

(via endocytosis and re-secretion), cytonemes (using actin fil-

aments bridging) or through heparan sulphate proteoglycans

(enhancing the spreading at the cell surfaces) [6]. Moreover,

graded morphogens generally travel through individual cells

with different sizes and mechanical/chemical properties, being

subjected to fluctuations on short length-scales, while driving

precise positional information. Without discussing in further

details such limiting aspects, it is now generally accepted that

more complicated morphogenetic models are needed in the

wide scenario of embryogenesis. In fact, it has been also

pointed out that morphogens have a much broader function-

ality, behaving as both patterning agents and growth factors

[7]. Grafting experiments on amphibians have shown that re-

generation, i.e. intercalary growth, occurs between cellular

boundaries that are not normally in contact. Furthermore, par-

ticular tissue components, called ’organizers’, have the ability

to coordinate defined structural changes in neighbouring cells,

intrinsically carrying information about the final size. Unlike

their function in pattern formation, the role of morphogens in

the regulation of growth, shape and size is largely unknown.

On one hand, their local concentration can trigger an increase

of mass resulting from a random cellular proliferation. Pre-

ferred orientation may exists in cellular division as well as

competition between different cell populations. On the other

hand, further spatial orchestration is needed in order to trans-
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form random proliferations into a uniform growth, which must

ultimately ceases as the correct size is reached. The control of

shape can therefore depend both on cell number and on over-

all size, suggesting that the spatial gradient of morphogens

can provide cells a dimension-sensing mechanism. This early

vision was also supported by the discovery that cells have the

ability to measure gradients comparing their own signalling

level with those of their neighbours through specific regula-

tory pathways [8]. Nevertheless other interpretations are also

possible. In fact, cells can change relative position undergoing

a rearrangement process (e.g. during intercalation), implying

that they are able to remodel their adhesive contacts making

use of a mechanical feedback with their environment to adjust

their position [9]. Giving a practical example, the stop signal

for growth, thus determining the final size, could be triggered

by a morphogen gradient level below a minimal threshold, as

well as by a critical increase in tissue compression, causing

a progressive inhibition of growth.

In summary, the orchestration of shape and size in the bi-

ological realm is more likely based on a combination of me-

chanical and biochemical feedbacks. Despite of the explosive

rate of new knowledge on the biochemistry of morphogenesis,

a major challenge is to understand the coordination between

mechanical properties of the cells and the morphogenetic sig-

nals. In the following, we will discuss how the configuration

forces theory can be used as a suitable theoretical framework

for bridging this gap. The theoretical framework is defined

in Sec. 2, and it is applied in Sec. 3 to a biological model

system.

2. Definition of the theoretical model

The aim of this section is to introduce the proper kinematical

description and the basic balance principles necessary to de-

fine a configurational-force theory of volumetric growth and

mass transport inside a continuous body.

2.1. Kinematics. Let us consider a mapping x = f(X, t)
that provides the actual position x of a material point of a

continuum body at time t, with position X in the reference

configuration. The deformation field is described through the

tensor gradient of deformation F = Grad x = ∇Xx, and the

second gradient of the deformation ∇XF = ∇X∇Xx. The

mechanical problem for volumetric growth and mass trans-

port can be formulated in material and spatial references, us-

ing two different space-time parametrizations: the so-called

direct and inverse kinematics, respectively. The direct kine-

matics is based on the set of variables (X, t) belonging to

the physical space, and the equations involves the spatial

velocity v = ∂x/∂t|X , and the material (spatial) velocity

gradient l = ∂F/∂t|X (L = ∂F/∂t|XF−1). On the other

hand, the inverse kinematics is based on the inverse motion

X = f−1(x, t), where the material domain changes over time

keeping its range fixed. When dealing with inhomogeneities

(or pseudo-inhomogeneities, in a more general framework)

in the material setting, the theory of configurational forces

demonstrates that the spatial parametrization is unable to ac-

count for all the degrees of freedom associated to the deforma-

tion fields [10]. In particular, the physical linear momentum

density p, conjugated to the spatial velocity v, is uniquely as-

sociated to the translational momentum. In the material man-

ifold, the inverse motion velocity V can be defined through

the identity:

dX

dt
=
∂f−1(x, t)

∂t
+
∂f−1(x, t)

∂x

∂x

∂t

∣∣∣∣
X

=

= V + F−1v = 0.

(1)

When dealing with problems involving local rearrangements

of the material manifold, we must therefore consider the bal-

ance of conjugated momentum Pm, also referred as pseudo-

momentum density or canonical energy-momentum density.

Furthermore, as accurately discussed in [11], a second gradi-

ent morphoelastic model is necessary if we want to include

mass transport phenomena.

2.2. Balance principles. A continuum treatment of growth

must account for a volumetric creation and/or absorption of

mass (through source/sink terms in the balance equation) as

well as for a surface flow, defined by a material flux M. The

balance of mass in the material manifold is expressed in func-

tion of the time derivative (indicated as an upper dot) of the

reference density ρ0 at the material point in X:

ρ̇0 = Γ(cα,∇Xcα)ρ0 + ∇X. M (2)

where cα, with α = 1, ....n, are passive scalar fields determin-

ing the time- and space-dependent characteristics of growth

inside the continuum. In our modeling framework, the scalars

cα(X, t) can be seen as the concentration per unit of ma-

terial volume of chemical substances (e.g. nutrients) and/or

molecular signals (e.g. growth factors, morphogens) which are

dispersed in the biological matter during the morphogenetic

processes. In particular, the volumetric source of mass Γ and

the surface mass flux M may depend on both the local con-

centration and on the gradient of the internal variables, for

consistency with the preliminary discussed experimental ob-

servations.

In terms of configurational forces, such scalar fields can

be treated as internal variables in the expression of the

free energy Ψ per unit mass of the system, with Ψ =
Ψ(F,∇XF, cα,∇Xcα,Θ;X, t). Here an explicit dependence

both on the absolute temperature Θ and on X are consid-

ered (so that the material can be smoothly material inho-

mogeneous), while we drop an explicit dependence on time,

discarding phenomena like ageing.

Indicating with Tf , Ts the first Piola-Kirchhoff stress and

hyperstress, i.e. the energy conjugates of F and ∇XF, we can

write the balance of mechanical energy of the body. Exploit-

ing the principle of virtual powers and taking into account

Eq. (2), we can write the local form for the balance of linear

momentum in direct kinematics, as follows:

d

dt
(ρ0v) =

dp

dt
= f0 + Γρ0v

+∇X. (Tf −∇X. Ts + M ⊗ v),

(3)
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where f0 represents the body force, and ⊗ is the dyadic prod-

uct. In Eq. (3), we assumed that the internal variables have

negligible inertia, so that they do not represent internal de-

grees of freedom (see [10], Ch. 5, for a broader discussion).

As already discussed, a more suitable description of the evo-

lution of material inhomogeneities requires a balance princi-

ple for the pseudo-momentum vector Pm = ρ0F
T .F.V. This

balance equation can be obtained by a canonical projection of

Eq. (3) in the material setting, and reads:

dPm

dt
= fext + fg + f inh + fc + fΘ + ∇X. b (4)

Equation (4) states that there are five sources of material in-

homogeneities: the convection of the body forces in fext, the

volumetric growth in fg , the true material inhomogeneities in

f inh, the internal variables in fc, and the temperature in fΘ.

They are defined as:

fext = −f0.F,

fg =
ρ̇0

ρ0

Pm − (∇Xv.M) .F,

f inh =
∂(K − ρ0Ψ)

∂X
|expl,

fc = −ρ0

(
∂Ψ

∂cα
∇Xcα +

∂Ψ

∂(∇Xcα)
∇X∇Xcα

)
,

fΘ = −ρ0

∂Ψ

∂Θ
∇XΘ = ρ0η∇XΘ,

(5)

where K = 1/2ρ0V.C.V is the kinetic energy density, and

η is the entropy density per unit mass. The explicit derivative

on X for f inh is defined keeping any other field constant. Ac-

cording to Eq. (4), the evolution of material inhomogeneities

is driven by the second-gradient Eshelby stress tensor, defined

as b = bf + ∇X.bs, whose components read:

bf = −(K − ρ0Ψ)IR − Tf .F− 2Ts : (∇XF), (6)

bs = ∇X.(Ts.F). (7)

In addition, we must impose that the Helmholtz free ener-

gy be frame-indifferent for arbitrary rotations of the actual

configuration. This condition gives:

F.Tf + ∇X F : Ts = (F.Tf + ∇X F : Ts)
T (8)

and corresponds to a second-order balance principle for the

angular momentum, imposing the symmetry of the general-

ized first-order Cauchy stress.

Let us now investigate the thermodynamic requirements

for our growing continuum. Indicating with ε the internal en-

ergy per unit mass, the local form of the first law of thermo-

dynamics can be expressed as follows:

ρ0ε̇ = Tf : Ḟ + Ts

... ∇XḞ −∇X. Q + r0 + M.∇Xε, (9)

where r0 is the external heat supply per unit of volume, and

Q is the heat flux. Equation (9) is complemented by the lo-

cal form of the second law of thermodynamics, imposing the

following entropy inequality:

ρ0η̇ ≥ M.∇Xη +
r0
Θ

−∇X.

(
Q

Θ
+ Q

)
, (10)

where Q represents an ’extra’ entropy flux, possibly driven

by the diffusion of the internal variables inside the material.

Recalling that the Helmholtz free energy per unit of mass is

defined as Ψ = ε−Θη, we put together Eqs. (9), (10) obtain-

ing the Clausius-Duhem form of the dissipation inequality for

a second gradient continuum:

−ρ0(Ψ̇ + Θ̇η) + Tf : Ḟ + Ts

... ∇XḞ

+M · (∇XΨ + η∇XΘ) − Q

Θ
· ∇XΘ + Θ∇X .Q ≥ 0

(11)

Equation (11) describes the thermodynamical restriction for

the energy dissipation rate inside a growing second gradient

hyperelastic continuum.

2.3. Constitutive equations with growth. As discussed in

a preceding paper [12], volumetric growth can be mod-

eled using a material isomorphism based on both a first-

and a second-order transplant Fg and Qg, respectively. In

this framework, the strain energy density is given by Ψ =
(detFg) · Ψ0(Fe,Qe, cα,∇Xcα,Θ), where the elastic terms

Fe,Qe read as follows:

Fe = F.F−1

g ,

Qe = ∇RF : [F−1

g ,F−1

g ] − Fe.Qg : [F−1

g ,F−1

g ]
(12)

from the composition laws of the first and second derivatives,

where (C : [A,B])ijk = CiαβAαjBβk. In the geometrical

line description, in Eq. (12) we introduce a first-order (gener-

ally not symmetric) material connection Γ, and a symmetric

second-order linear connection Λ, defined as:

Γ = −F−1

g .∇XFg; Λ = F−1

g .Qg (13)

representing the torsion and the curvature of the true material

inhomogeneities. Using the transformation rules of Eq.(12) in

the dissipation inequality, we derive the following constitutive

equations in isothermal conditions:

(
Ts

T : [FT
g ,F

T
g ]

)T

= Jρ0

∂Ψ0

∂Q e

,

Qg : Ts + Fg.Tf = Jρ0

∂Ψ0

∂Fe

,

(14)

while Eq. (11) can be simplified as:

−b̃f : (ḞgF
−1

g ) + M.∇XΨ + bs

... Λ̇ + Θ∇X .Q

− ρ0

(
∂Ψ

∂cα
ċα +

∂Ψ

∂(∇Xcα)
∇X ċα

)
≥ 0.

(15)
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In summary, the first-order Eshelby stress in the grown state,

given by

b̃f = ρ0

(
ψI − ∂ψ

∂Fe

.Fe − 2
∂ψ

∂Qe

: Qe

)
,

and the material Eshelby hyperstress bs drive the evolution of

Fg and Qg , respectively. The Clausius-Duhem inequality in

Eq. (15) provides the thermodynamic basis for understanding

how the regulation mechanisms of growth and shape are cou-

pled with both the mechanical and the biochemical state of

the continuum. In the following, we discuss the role of con-

figurational forces during morphogenesis in a simple model

system.

3. Application: the growth control

in the imaginal wing disc of Drosophila

The imaginal wing disc of Drosophila melanogaster is a flat

pouch of tens of epithelial cells formed at the early larval

stage of development. During the metamorphosis in the pupa,

the cells inside the disc multiply their number by a factor one

thousand in about four days, while the disc dimensions pre-

determine the final size of the adult fly. In this larval period,

the disc growth is regulated by the morphogen Decapenta-

plegic (DPP), which is secreted in a central smooth boundary

between two sets of cell compartments. While the local con-

centration of DPP is found to trigger growth by activating

wing patterning genes, DDP also spreads in the disc, form-

ing a concentration gradient which is somehow implicated in

growth and shape regulations. The aim of this paragraph is to

investigate such orchestration mechanisms using the proposed

theoretical framework.

Experimental studies have observed that growth inside

the imaginal disc is spatially homogeneous [13], so that we

can set Fg = g(t)I, where g(t) is a time-dependent scalar

growth rate. Moreover, the relative position between cells

is found to remain unaltered over time, allowing to impose

M = 0 everywhere. For the sake of simplicity, we neglect

the presence of second-order inhomogeneities in the growth

process, setting Qg = 0 and not evolving. The strain ener-

gy density per unit mass of the imaginal disc takes the form

Ψ = J · Ψ0(Fe, c,∇Xc,Θ), where J = (detFg) is the area

increase of the disc and c is the local material concentration of

DDP. Using a suitable field-theoretic viewpoint we envisage

an extra-entropy flux given by

Q = ρ0

∂Ψ

∂(∇xc)
ċ/Θ,

so that the reduced dissipation inequality in Eq. (15) reads:

−b̃f : (ḞgF
−1

g ) − ρ0

δΨ

δc
ċ ≥ 0, (16)

where the chemical potential associated to the morphogen,

given by the functional derivative of Ψ, is coupled with the

growth evolution. Guided by the experimental knowledge, re-

porting a morphogen gradient scaling with tissue size [14],

we can postulate the following simplified form of the strain

energy density:

Ψ0(Fe, c,∇Xc,Θ)

=
τ

2
(D∇Xc.∇Xc+ γc2) + Ψ0(Fe,Θ),

(17)

where τ,D, γ are positive coefficients which may depend at

most on the temperature. In agreement with Eq. (16), a dissi-

pative evolution equation for the morphogen can be given in

the material setting by:

ċ = −δΨ
δc
/τ = −γc+ ∇X .(D∇Xc) (18)

Eq. (18) is a mobility equation having both an intrinsic time-

scale T = γ−1, e.g. the half-life of DDP inside the disc, and

a typical lengthscale L =
√
DT , which may represent the de-

cay length of the exponential decrease of DDP from the source

in experiments. In the following, we will consider dimension-

less equations using the variables t = t/T and X = X/L.

Wartlick et al. [14] have also reported that all cells in the disc

measured the same temporal changes in DDP signalling, so

we can give the solution of Eq. (18) using a variable separa-

tion c(X, t) = cX(X) · ct(t), which reads:

ċt(t)

ct(t)
= −1 +

∇2cX(X)

cX(X)
= α, (19)

where α is a positive constant, which represents the space

invariant temporal increase in DDP. Such a value is empiri-

cally found to correlate with the growth rate of cells, so that

α ≪ 1, representing the ratio between the half-life time of

DDP (about 30 minutes) and the doubling-time of cells in-

side the imaginal disc (about 4 hours) [14]. The exponential

distribution cX is therefore completely defined imposing the

growth-triggering value C0 at the external border of the disc,

together with the border continuity of c and ∇c with the out-

er solution, which must vanish at long distances. This simple

derivation is left as an exercise to the readers.

In absence of external geometrical constraints, the growth

process does not generate residual stresses inside the imagi-

nal disc, so that Fe = I and b̃f = Jρ0Ψ0I. Moreover, we

can postulate that ρ0τ ċ
2 = ξJρ0Ψ0 + Σ, where ξ represents

the constant production rate of strain energy density per unit

volume, so that Σ ≥ 0 is the energy dissipation rate of the

growth process. Considering that the cells keep their spatial

density ρc unchanged during the growth process, and recall-

ing that ρ0 = ρc · J , we derive from Eq. (16) the following

constitutive equation for growth:

J̇

J
=
ρ̇0

ρ0

= I : (ḞgF
−1

g ) = ξ (20)

Putting together Eqs. (19), (20), we find that

log(ct(t)) =
α

ξ
log(J(t)) = 2

α

ξ
log(g(t)),

which corresponds to the experimental curves in [15]. In par-

ticular, the cellular proliferation rate inside the disc is corre-

lated to the temporal signalling increase in DDP through a

system constant, experimentally measured at α/ξ ∼ 0.59.

In conclusion, we have demonstrated that the DDP mor-

phogen controls growth and shape regulations inside the imag-

inal disc at the larval stage. An additional hypothesis can be
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done on the control of its final size, which can be determined

by the spatial gradient of c, given by ∇xc = F−T .∇Xc.
When ∇xc decreases under a minimal threshold at the bor-

der, growth stops in an outer ring of the disc. Consequently,

inner cells proliferation provokes residual compression inside

the disc, which in turn gradually inhibits growth thanks to the

Eshelbian coupling in Eq. (16). Further developments in this

sense will make the object of a future work.

4. Conclusions

Developmental biologists made enormous progress over the

past decades in deciphering the molecular bases of pattern

formation; however, shape and size regulations are still poor-

ly understood. In this work, we proposed a continuum model

for growth and mass transport during morphogenetic process-

es. Using the theory of configurational forces, we have de-

termined the thermo-mechanical bases of growth regulation

mechanisms based on both the mechanical and the biochemi-

cal state of the tissue. The model is successfully applied to de-

scribe how the DDP morphogen in Drosophila melanogaster

not only triggers growth of the imaginal wing disc, but can

also control its shape and final size.
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