PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved aeroelastic design through structural optimization

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the idea of coupled multiphysics computations. It shows the concept and presents some preliminary results of static coupling of structural and fluid flow codes as well as biomimetic structural optimization. The model for the biomimetic optimization procedure was the biological phenomenon of trabecular bone functional adaptation. Thus, the presented structural bio-inspired optimization system is based on the principle of constant strain energy density on the surface of the structure. When the aeroelastic reactions are considered, such approach allows fulfilling the mechanical theorem for the stiffest design, comprising the optimizations of size, shape and topology of the internal structure of the wing.
Rocznik
Strony
237--240
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] M. Allen and K. Maute, “Reliability-based design optimization of aeroelastic structures”, Struct. Multidisc. Optim. 27, 228–242 (2004).
  • [2] K. Maute and M. Allen, “Conceptual design of aeroelastic structures by topology optimization”, Struct. Multidisc. Optim. 27, 27–42 (2004).
  • [3] L. Krog, A. Tucker, M. Kemp, and R. Boyd, “Topology optimization of aircraft wing box ribs”, AIAA-Paper 2004–4481, CD-ROM (2004).
  • [4] K. Maute and G. Reich, “An Integrated Multi-disciplinary Topology Optimization Approach for Adaptive Wing Design”, AIAA J. Aircraft 43 (1), 253–263 (2006).
  • [5] U. Schramm and M. Zhou, “Recent developments in the commercial implementation of topology optimization”, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials 1, 239–248 (2006).
  • [6] J. Wolff, Das Gesetz der Transformation der Knochen, Hirschwald, Berlin, 1892.
  • [7] T. Adachi, K. Tsubota, Y. Tomita, and S.J. Hollister, “Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models”, J Biomech Eng 123 (5), 403–409 (2001).
  • [8] R. Huiskes, R. Ruimerman, G.H. Van Lenthe, and J.D. Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone”, Nature 405, 704–706 (2000).
  • [9] R. Huiskes, “Computational theories of bone modeling and remodelling”, in Advanced Course on Modelling in Biomechanics, Institute of Fundamental Technological Research PAS, Warsaw, 2003.
  • [10] R. Huiskes, H. Weinans, J. Grootenboer, M. Dalstra, M. Fudala, and T.J. Slooff, “Adaptive bone remodelling theory applied to prosthetic-design analysis”, J. Biomech. 20, 1135–1150 (1987).
  • [11] M.G. Mullender and R. Huiskes, “Proposal for the regulatory mechanism of Wolff’s law”, J. Orthop. Res. 13 (4), 503–512 (1995).
  • [12] M.G. Mullender, R. Huiskes, and H. Weinans, “A physiological approach to the simulation of bone remodeling as a selforganizational control process”, J. Biomech. 27 (11), 1389–1394 (1994).
  • [13] K. Dems and Z. Mroz, “Multiparameter structural shape optimization by finite element method”, Int. J. Num. Meth. Eng. 13, 247–263 (1978).
  • [14] Z. Mroz, “On a problem of minimum weight design”, Quast. Appl. Math. 19, 127–135 (1961).
  • [15] P. Pedersen, Optimal Designs – Structures and Materials – Problems and Tools, Department of Mechanical Engineering, Solid Mechanics, Denmark, 2003.
  • [16] Z. Wasiutynski, “On the congruency of the forming according to the minimum potential energy with that according to equal strength”, Bull. Pol. Ac.: Tech. 8 (6), 259–268 (1960).
  • [17] M. Nowak, “Structural optimization system based on trabecular bone surface adaptation”, Struct. Multidisc Optim. 32, 241–251 (2006).
  • [18] M.P. Bendsoe and O. Sigmund, Topology Optimization, Theory, Methods and Applications, Springer Verlag, Berlin, 2003.
  • [19] T. Gerhold, O. Friedrich, J. Evans, and M. Galle, “Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code”, AIAA-papers 97–0167, CD-ROM (1997).
  • [20] R. Roszak, P. Posadzy, W. Stankiewicz, and M. Morzynski, “Fluid structure interaction for large scale complex geometry and non-linear properties of structure”, Archives of Mechanics 61 (1), 1–24 (2009).
  • [21] M. Nowak, “A generic 3-dimensional system to mimic trabecular bone surface adaptation”, Computer Methods in Biomechanics and Biomechanical Engineering 9 (5), 313–317 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.