PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In present paper an improved multi-objective evolutionary algorithm is used for Pareto optimization of selected coupled problems. Coupling of mechanical, electrical and thermal fields is considered. Boundary-value problems of the thermo-elasticity, piezoelectricity and electro-thermo-elasticity are solved by means of finite element method (FEM). Ansys Multiphysics and MSC.Mentat/Marc software are used to solve considered coupled problems. Suitable interfaces between optimization tool and the FEM software are created. Different types of functionals are formulated on the basis of results obtained from the coupled field analysis. Functionals depending on the area or volume of the structure are also proposed. Parametric curves NURBS are used to model some optimized structures. Numerical examples for exemplary three-objective optimization are presented in the paper.
Rocznik
Strony
215--222
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Strength of Materials and Computational Mechanics, Silesian University of Technology 18a. Konarskiego St., 44-100 Gliwice, Poland, adam.dlugosz@polsl.pl
Bibliografia
  • [1] G. Beer, “Finite element, boundary element and coupled analysis of unbounded problems in elastostastics”, Int. Meth. Eng. 19, 567–580 (1983).
  • [2] M. Kleiber, Handbook of Computational Solid Mechanics, Springer, Berlin, 1998.
  • [3] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Butterworth Heinemann, Oxford, 2000.
  • [4] Ansys Multiphysics Documentation, Ansys Co, 2010.
  • [5] MSC.MARC, Theory and User Information, Vol. A-D, MSC Software Corporation, 2010.
  • [6] T. Burczyński and A. Długosz, “Evolutionary optimization in thermoelastic problems using the boundary element method”, Computational Mechanics 28 (3–4), 317–324 (2002).
  • [7] R. Białecki, T. Burczyński, A. Długosz, W. Kuś, and Z. Ostrowski, “Evolutionary shape optimization of thermolastic bodies exchanging heat by convection and radiation”, Computer Methods in Appl. Mechanics and Eng. 194, 1839–1859 (2005).
  • [8] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary Programs, WNT, Warszawa, 1996, (in Polish).
  • [9] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength pareto evolutionary algorithm”, TIK-Report 103, CD-ROM (2001).
  • [10] K. Deb, “Multi-objective genetic algorithms: problem difficulties and construction of test problems”, Evolutionary Computation 7 (3), 205–230 (1999).
  • [11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-objective genetic algorithm: NSGA-II”, IEEE Trans. on Evolutionary Computation 6 (2), 181–197 (2002).
  • [12] K. Deb, “Evolutionary multi-objective optimization without additional parameters, studies in computational intelligence”, Evolutionary Comp. 54, 241–257 (2007).
  • [13] A. Długosz and T. Burczyński, “Integration of multiobjective evolutionary algorithms and CAE systems in shape optimization of selected coupled problems”, Coupled Problems IV Comp. Methods for Coupled Problems in Science and Eng. 1, CD-ROM (2011).
  • [14] A. Długosz and T. Burczyński, “Shape optimization of electrothermal- mechanical systems by using multiobjective evolutionary algorithms”, Evolutionary and Deterministic Methods for Design, Optimization and Control. Applications to Industrial and Societal Problems CIMNE 1, 162–169 (2011).
  • [15] G. Dziatkiewicz, A. Długosz, and T. Burczyński, “Application of multi-objective evolutionary algorithms in optimization of piezoelectric models”, IV Eur. Conf. on Comp. Mechanics (ECCM IV) 1, CD-ROM (2010).
  • [16] W. Kuś, A. Długosz, and T. Burczyński, “OPTIM – library of bioinspired optimization algorithms in engineering applications”, Computer Methods in Materials Science 11 (1), 9–15 (2011).
  • [17] A. Długosz, “Multiobjective evolutionary optimization of MEMS structures”, Computer Assisted Mechanics and Eng. Sci. 17 (1), 41–50 (2010).
  • [18] N. Maluf and K. Williams, An Introduction to Microelectromechanical Systems Engineering”, Artech House Publishers, London, 2004.
  • [19] G.A.Maugin, R. Drouot, and F.Sidoroff, Continuum Mechanics, Cluwer Academic Publisher, London, 2002.
  • [20] G. Helke and K. Lubitz, “Piezoelectric PZT ceramics”, Springer Series in Materials Science 114, 89–130 (2008).
  • [21] A. Poteralski, M. Szczepanik, G. Dziatkiewicz, W. Kuś, and T. Burczyński, “Immune identification of piezoelectric material constants using BEM”, Inverse Problems in Science and Engineering 19 (1), 103–116 (2011).
  • [22] L.A. Piegl and W. Tiller, The NURBS Book, Springer, Berlin, 1996.
  • [23] http://www.sfu.ca/immr/
  • [24] http://www.sfu.ca/adm/heatuator.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.