PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A stress-based formulation of the free material design problem with the trace constraint and single loading condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem to find an optimal distribution of elastic moduli within a given plane domain to make the compliance minimal under the condition of a prescribed value of the integral of the trace of the elastic moduli tensor is called the free material design with the trace constraint. The present paper shows that this problem can be reduced to a new problem of minimization of the integral of the stress tensor norm over stresses being statically admissible. The eigenstates and Kelvin’s moduli of the optimal Hooke tensor are determined by the stress state being the minimizer of this problem. This new problem can be directly treated numerically by using the Singular Value Decomposition (SVD) method to represent the statically admissible stress fields, along with any unconstrained optimization tool, e.g.: Conjugate Gradient (CG) or Variable Metric (VM) method in multidimensions.
Rocznik
Strony
191--204
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
autor
  • Department of Structural Mechanics and Computer Aided Engineering, Faculty of Civil Engineering, Warsaw University of Technology, 16 Armii Ludowej St., 00-637 Warszawa, Poland, t.lewinski@il.pw.edu.pl
Bibliografia
  • [1] A.V. Cherkaev, Variational Methods for Structural Optimization, Springer, New York, 2000.
  • [2] F. Schury, M. Stingl, and F. Wein, “Efficient two-scale optimization of manufacturable graded structures”, SIAM J. Sci. Comp., (2012), to be published.
  • [3] J. Haslinger, M. Koˇcvara, G. Leugering, and M. Stingl, “Multidisciplinary free material optimization”, SIAM J. Appl. Math. 70 (7), 2709–2728 (2010).
  • [4] M. Koˇcvara, M. Stingl, and J. Zowe, “Free material optimization: recent progress”, Optimization 57 (1), 79–100 (2008).
  • [5] S. Turteltaub and P. Washabaugh, “Optimal distribution of material properties for an elastic continuum with structuredependent body force”, Int. J. Solids. Struct. 36, 4587–4608 (1999).
  • [6] W.H. Yang, “A useful theorem for constructing convex yield functions”, J. Appl. Mech. Trans. ASME 47, 301–303 (1980).
  • [7] W.H. Yang, “The mathematical foundation of plasticity theory”, in: Advances in Applied Mechanics, eds. E.van der Giessen and T.Y. Wan, pp. 303–315, Academic Press, San Diego, 1998.
  • [8] A. ˇCyras, “Optimization theory of perfectly locking bodies”, Arch. Mech. 24 (2), 203–210 (1972).
  • [9] A. Borkowski, “On dual approach to piecewise-linear elastoplasticity. Part I: Continuum models”, Bull. Pol. Ac.: Sci. 52 (4), 329–343, (2004).
  • [10] A. Borkowski, “On dual approach to piecewise-linear elastoplasticity. Part II: Discrete models”, Bull. Pol. Ac.: Sci. 52 (4), 345–352, (2004).
  • [11] J.J. Telega and S. Jemioło, “Macroscopic behaviour of locing materials with microstructure. Part I. Primal and dual elasticlocking potential. Relaxation”, Bull. Pol. Ac.: Sci. 46 (3), 265–276 (1998).
  • [12] F. Demengel and P. Suquet, “On locking materials”, Acta Appl. Math. 6, 185–211, (1986).
  • [13] T. Lewiński and J.J. Telega, “Michell-like grillages and structures with locking”, Arch. Mech. 53 (4–5), 457–485 (2001).
  • [14] A. Borkowski, Analysis of Skeletal Structural Systems in the Plastic and Elastic-Plastic Range, Elsevier-PWN, Amsterdam-Warsaw, 1988.
  • [15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.
  • [16] S. Czarnecki, T. Lewiński, and T. Łukasiak, “Free material optimum design of plates of pre-defined Kelvin moduli”, 9th World Congress on Structural and Multidisciplinary Optimization 1, CD-ROM (2011).
  • [17] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976.
  • [18] J. Neˇcas and I. Hlavaˇcek, Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction, Elsevier, Amsterdam, 1981.
  • [19] M.P. Bendsøe, J.M. Guedes, R.B. Haber, P. Pedersen, and J.E. Taylor, “An analytical model to predict optimal material properties in the context of optimal structural design”, J. Appl. Mech. Trans. ASME 61, 930–937 (1994).
  • [20] C. Barbarosie and S. Lopes, “Study of the cost functional for free material design problems”, Numerical Functional Analysis and Optimization 29, 115–125 (2008).
  • [21] J. Rychlewski, “On Hooke’s law”, Prikl. Mat. Mekh. 48, 420–435 (1984), (in Russian).
  • [22] S. Sutcliffe, “Spectral decomposition of the elasticity tensor”, J. Appl. Mech. Trans. ASME 59, 762–773 (1992).
  • [23] S. Czarnecki and T. Lewiński, “The stiffest designs of elastic plates. Vector optimization for two loading conditions”, Comp. Meth. Appl. Mech. Eng. 200, 1708–1728 (2011).
  • [24] Z. Kączkowski, “Statics of bars and bar systems”, in: Technical Mechanics. Strength of Structural Elements, ed. M. Życzkowski, pp. 20–176, PWN, Warszawa, 1988, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0078-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.