PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optically transparent and structurally sound silica aerogels: insights from a process study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aerogels are internally nanostructured materials characterized with a plethora of unique properties. Monoliths with high optical transparency made of silica aerogels were some of the first and still one of the most important classes of aerogels. Experiments and theory indicate that optical transparency and structural integrity of silica aerogels are negatively correlated. Other than optimal combination of processing conditions during aerogel fabrication can result in either highly transparent but cracked or in crack-free but less transparent and even opaque aerogels monoliths. Results are presented from the study of the relationship between the properties of single-step tetramethoxysilane (TMOS) base-catalyzed silica aerogels and the processing conditions, both at the alcogel preparation step and during the supercritical liquid CO2 drying process. Crack-free aerogel monoliths with good optical transparency were obtained with TMOS:methanol (MeOH) molar ratios of 1:16 and TMOS:ammonia (NH4OH) molar ratios of 1:0.05, CO2-MeOH exchange rates of about 1.25 ml/min, and autoclave decompression rates of 70 KPa/min. Adding glycerol in the sol-gel stage had a positive effect on the aerogel monolithicity but, even without glycerol, crack-free silica aerogels can be obtained by reducing the depressurization rate of the autoclave. A strict control and careful selection of the aerogel’s processing conditions within the set of parameters identified will enable the fabrication of structurally sound silica aerogels with good optical properties essential for a number of applications.
Słowa kluczowe
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
autor
  • North Dakota State University, Industrial and Manufacturing Engineering, Fargo, ND 58102, USA,, val.marinov@ndsu.edu
Bibliografia
  • 1. Aegerter M.A., Leventis N., Koebel M.M.: Aerogels Handbook. Springer, New York, 2011.
  • 2. Hirashima H., Kojima C., Imai H.: Application of alumina aerogels as catalysts. Journal of Sol-Gel Science and Technology 8 (1997), 843-846.
  • 3. Smirnova A., Dong X., Hara H., Vasiliev A., Sammes N.: Novel carbon aerogel-supported catalysts for PEM fuel cell application. International journal of hydrogen energy 30 (2005), 149-158.
  • 4. Moreno-Castilla C., Maldonado-Hódar F.: Carbon aerogels for catalysis applications: An overview. Carbon 43 (2005), 455-465.
  • 5. Pajonk G.: Aerogel catalysts. Applied Catalysis 72 (1991), 217-266.
  • 6. Smith D.M., Maskara A., Boes U.: Aerogel-based thermal insulation. Journal of non-crystalline solids 225 (1998), 254-259.
  • 7. Cantin M., Casse M., Koch L., Jouan R., Mestreau P., Roussel D., Bonnin F., Moutel J., Teichner S.: Silica aerogels used as Cherenkov radiators. Nuclear Instruments and Methods 118 (1974), 177-182.
  • 8. Mandarino J.: The Gladstone-Dale relationship. Part I: Derivation of new constants. Canadian Mineralogist 14 (1976), 498-502.
  • 9. Emmerling A., Petricevic R., Beck A., Wang P., Scheller H., Fricke J.: Relationship between optical transparency and nanostructural features of silica aerogels. Journal of non-crystalline solids 185 (1995), 240-248.
  • 10. Fricke J.: Aerogels. Springer-Verlag, Berlin, 1986.
  • 11. Hüsing N., Schubert U.: Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition 37 (1998), 22-45.
  • 12. Kistler S.: Coherent Expanded Aerogels and Jellies. Nature 127 (1931), 741.
  • 13. Nicolaon G., Teichner S.: New preparation process for silica xerogels and aerogels, and their textural properties. Bulletin de la Société Chimique de France 5 (1968), 1900-1906.
  • 14. Box M., Lo S., McKellar B., Reich M.: The application of the Rayleigh–Gans approximation to scattering by polydispersions. Quarterly Journal of the Royal Meteorological Society 104 (1978), 959-969.
  • 15. Beck A., Gelsen O., Wang P., Fricke J.: Light scattering for structural investigations of silica aerogels and alcogels. Le Journal de Physique Colloques 50 (1989), 4-4.
  • 16. Van de Hulst H.: Light scattering by small particles. Dover Publications, Mineola, N.Y., 1981.
  • 17. Schaefer D.: What factors control the structure of silica aerogels? Le Journal de Physique Colloques 50 (1989), 4-4.
  • 18. Voorhees P.: The theory of Ostwald ripening. Journal of Statistical Physics 38 (1985), 231-252.
  • 19. Pajonk G., Venkateswara Rao A., Sawant B., Parvathy N.: Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions. Journal of non-crystalline solids 209 (1997), 40-50.
  • 20. Pajonk G.M.: Some applications of silica aerogels. Colloid & Polymer Science 281 (2003), 637-651.
  • 21. Venkateswara Rao A., Pajonk G., Haranath D., Wagh P.: Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels. Journal of Materials Synthesis and Processing 6 (1998), 37-48.
  • 22. Scherer G.W.: Theory of drying. Journal of the American Ceramic Society 73 (1990), 3-14.
  • 23. Hosticka B., Norris P., Brenizer J., Daitch C.: Gas flow through aerogels. Journal of non-crystalline solids 225 (1998), 293-297.
  • 24. Calas S., Sempere R.: Textural properties of densified aerogels. Journal of non-crystalline solids 225 (1998), 215-219.
  • 25. Rogacki G., Wawrzyniak P.: Diffusion of ethanol-liquid CO2 in silica aerogel. Journal of non-crystalline solids 186 (1995), 73-77.
  • 26. Masmoudi Y., Rigacci A., Ilbizian P., Cauneau F., Achard P.: Diffusion during the supercritical drying of silica gels. Drying technology 24 (2006), 1121-1125.
  • 27. Tewari P., Hunt A., Lofftus K.: Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters 3 (1985), 363-367.
  • 28. Wagh P., Begag R., Pajonk G., Rao A.V., Haranath D.: Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Materials chemistry and physics 57 (1999), 214-218.
  • 29. Athmuri K.: Transparent and Crack-free Silica Aerogels. M.Sc. Thesis, North Dakota State University, 2012.
  • 30. Haranath D., Rao A.V., Wagh P.: Influence of DCCAs on optical transmittance and porosity properties of TMOS silica aerogels. Journal of Porous Materials 6 (1999), 55-62.
  • 31. Sorensen L.M.: Embedding Luminescent Nanocrystals in Silica Sol-Gel Matrices. M.Sc. Thesis, Florida State University, 2006.
  • 32. Rao A.V., Kulkarni M.M.: Effect of glycerol additive on physical properties of hydrophobic silica aerogels. Materials chemistry and physics 77 (2003), 819-825.
  • 33. Novak Z., Knez Ž.: Diffusion of methanol–liquid CO2 and methanol–supercritical CO 2 in silica aerogels. Journal of non-crystalline solids 221 (1997), 163-169.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0076-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.