Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes a novel method for feedback stability evaluation for linear time-varying, discrete-time control systems. It is assumed that the time-varying system can be described by the general discrete-time, time-varying state space model and by the equivalent linear input-output (transfer) operator. The method extends feedback stability concepts for systems given in a general linear time-varying, discrete-time form, not only in the Lurie form. In the paper selected short-time stability concepts are employed for inference about feedback stability of systems defined on an infinite time-horizon. Theoretical considerations are complemented by numerical examples.
Rocznik
Tom
Strony
171--178
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Control and Measurements, West Pomeranian University of Technology, 37 Sikorskiego St., 70-313 Szczecin, Poland, orzel@zut.edu.pl
Bibliografia
- [1] R.W. Brockett and H.B. Lee, “Frequency domain instability criteria for time-varying and nonlinear systems”, Proc. IEEE 55, 604–619 (1967).
- [2] R.W. Brockett and J.W. Willems, “ Frequency domain stability criteria”, IEEE Trans. Autom. Contr. 11, 255–261, 407–413 (1966).
- [3] H. Kwon and AE. Pearson, “On feedback stabilization of timevarying discrete linear systems”, IEEE Trans. Aut. Contr. 23 (3), 479–481 (1966).
- [4] R.E. Kalman, “Lyapunov functions for the problem of Lurie in automatic control”, Proc. Nat. Acad. Sci. 49, 201–205 (1963).
- [5] A. Polański, “Chosen problems of linear systems’ stability with variable in time parameters”, Scientific Note Books of the Silesian University of Technology: Automatics 128, CD-ROM (2000), (in Polish).
- [6] R.N. Shorten and K.S. Narendra, “On the stability and existence of common Lyapunov functions for stable linear switching systems”, Proc. 37th IEEE Conf. on Decision and Control 1, 3723–3724 (1998).
- [7] V.M. Popov, “Absolute stability of nonlinear systems of automatic control”, Automation and Remote Control 22, 857–875 (1961).
- [8] V.M. Popov, Hyperstability of Control Systems, Springer- Verlag, Berlin, 1973.
- [9] V.M. Popov, “The solution of a new stability problem for controlled systems”, Automation and Remote Control 24, 1–23 (1963).
- [10] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma”, Syst. Contr. 28, 7–10 (1966).
- [11] V.A. Yakubovich, “A frequency theorem for the case in which the state and control spaces are Hilbert spaces, with an applications to some problems in the synthesis of optimal controls”, Siberian J. of Mathematics 15, 457–476 (1974).
- [12] V.A. Yakubovich, “The frequency theorem in control theory”, Siberian J. of Mathematics 14, 384–419 (1973).
- [13] P. Grabowski, Stability of Lurie’s Systems, AGH Publishing House, Kraków, 1999, (in Polish).
- [14] A. Halanay and V. Ionescu, “Generalized discrete-time Popov-Yakubovich theory”, Systems & Control Letters 20 (1), 1–6 (1993).
- [15] V. Ionescu and M. Weiss, “Continuous and discrete-time Riccati theory: a Popov function approach”, Linear Algebra and its Applications 193, 173–209 (1993).
- [16] D. Jonson, “A Popov criterion for systems with slowly timevarying parameters”, IEEE Trans. Aut. Contr. 44, 844–846 (1999).
- [17] P. Orlowski, “Methods for stability evaluation for linear time varying, discrete-time systems on finite time horizon”, Int. J. Control 79 (3), 249–262 (2006).
- [18] P. Orlowski, “An extension of Nyquist feedback stability for linear time-varying, discrete-time systems”, Int. J. Factory Automation, Robotics and Soft Computing 2, 51–56 (2007).
- [19] P. Orlowski, “Feedback stability of discrete-time, linear timevarying systems”, Proc. 16th Mediterranean Conf. on Control and Automation 1, 1002–1007 (2008).
- [20] K. Liu, “Extension of modal analysis to linear time-varying systems”, J. Sound and Vibration 226, 149–167 (1999).
- [21] S. Shokoohi and L. Silverman, “Linear time-variant systems: stability of reduced models”, Automatica 20, 59–67 (1987).
- [22] D.O. Anderson, “Internal and external stability of linear time varying systems”, SIAM J. Control and Optimization 20, 408–413 (1982).
- [23] P. Iglesias, “Input-output stability of sampled-data linear timevarying systems”, IEEE Trans. Aut. Contr. 40 (9), 1647–1650 (1995).
- [24] H.S. Han and J.G. Lee, “Necessary and sufficient conditions for stability of time-varying discrete interval matrices”, Int. J. Control 59 (4), 1021–1029 (1994).
- [25] D.E. Miller and E.J. Davison, “An adaptive controller which provides Lyapunov stability”, IEEE Trans. Automat. Control 34, 599–609 (1989).
- [26] K.S. Narendra and J. Balakrishnan, “Adaptive control using multiple models”, IEEE Trans. Automat. Control 42, 171–187 (1989).
- [27] M. De La Sen, “Robust stability of a class of linear timevarying systems”, IMA J. Mathematical Control and Information 19, 399–418 (2002).
- [28] H.K. Khalil, Nonlinear Systems, Prentice-Hall, New York, 1996.
- [29] P. Orlowski, “Discrete-time, linear periodic time-varying system norm estimation using finite time horizon transfer operators”, Automatika 51 (4), 325–332 (2010).
- [30] R.A. Meyer and C.S. Burrus, “A unified analysis of multirate and periodically timevarying digital filters”, IEEE Trans. Circuits and Systems 22, 162–168 (1975).
- [31] D.S. Flamm, “A new shift-invariant representation of periodic linear systems”, Systems & Control Lett. 17, 9–14 (1991).
- [32] S. Bittanti and P. Colaneri, Invariant representations of discrete-time periodic systems, Automatica 36, 1777–1793 (2000).
- [33] A. Varga, “Computation of transfer function matrices of generalized state-space models”, Int. J. Control 50, 2543–2561 (1989).
- [34] A.J. Laub, “Efficient multivariable frequency response computations”, IEEE Trans. Autom. Control 26, 407–408 (1981).
- [35] H. D’Angelo, Linear Time-Varying Systems, Allyn and Bacon, Boston, 1970.
- [36] P. Orlowski, “Determining the degree of system variability for time-varying discrete-time systems”, Proc. 16th IFAC World Congress 1, CD-ROM (2005).
- [37] B. Bamieh, J.B. Pearson, B.A. Francis, and A. Tannenbaum, “A lifting technique for linear periodic systems with applica-Bull. Pol. Ac.: Tech. 60(1) 2012 177 Systems & Control Letters 17 (2), 79–88 (1991).
- [38] F. Amato, M. Ariola, and P. Dorato, “Finite-time control of linear systems subject to parametric uncertainties and disturbances”, Automatica 37 (9), 1459–1463 (2001).
- [39] A. Davari and R.K. Ramanathaiah, “Short-time stability analysis of time-varying linear systems”, Proc. 26th Southeastern Symposium on System Theory 1, 302–304 (1994).
- [40] P. Dorato, “Short time stability in linear time-varying systems”, Proc. IRE Int. Convention Record 4, 83–87 (1961).
- [41] P. Dorato, C.T. Abdallah, and D. Famularo, “Robust finite-time stability design via linear matrix inequalities”, Proc. 36th IEEE Conf. on Decision and Control 2, 1305–1306 (1997).
- [42] P. Dorato, “An overview of finite-time stability”, in: Current Trends in Nonlinear Systems and Control eds.: L. Menini, L. Zaccarian and C.T. Abdallah, pp. 185–194, Birkh¨auser, Boston, 2006.
- [43] S. Mastellone, P. Dorato, and C.T. Abdallah, “Finite-time stability for nonlinear networked control systems”, in: Current Trends in Nonlinear Systems and Control eds.: L. Menini, L. Zaccarian and C.T. Abdallah, pp. 535–553, Birkh¨auser, Boston, 2006.
- [44] D.Y. Rew, M.J. Tahk, and H. Cho, “Short-time stability of proportional navigation guidance loop”, IEEE Trans. Aerospace and Electronic Systems 32 (3), 1107–1115, (1996).
- [45] L. Weiss and E.F. Infante, “Finite time stability under perturbing forces and on product spaces”, IEEE Trans. Autom. Contr. 12, 54–59 (1967).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0024