PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation of interval damping ratio under uncertain load in power system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of small-signal stability considering load uncertainty in power system is investigated. Firstly, this paper shows attempts to create a nonlinear optimization model for solving the upper and lower limits of the oscillation mode’s damping ratio under an interval load. Then, the effective successive linear programming (SLP) method is proposed to solve this problem. By using this method, the interval damping ratio and corresponding load states at its interval limits are obtained. Calculation results can be used to evaluate the influence of load variation on a certain mode and give useful information for improvement. Finally, the proposed method is validated on two test systems.
Rocznik
Strony
151--158
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
autor
autor
  • Shanghai Electric Power Design Institute Co., Ltd, 310 South Chongqing Rd., Luwan District, 200025 Shanghai, P. R. China, sjtuxj@hotmail.com
Bibliografia
  • [1] L. Xu and S. Ahmed-Zaid, “Tuning of power system controllers using symbolic eigensensitivity analysis and linear programming”, IEEE Trans. on Power Systems 10 (1), 314–322 (1995).
  • [2] M. Xiao-ming, Z. Yao, G. Lin, and W. Xiao-chen, “Coordinated control of interarea oscillation in the China southern power grid”, IEEE Trans. Power Systems 21 (2), 845–852 (2006).
  • [3] L. Wang and A. Semlyen, “Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems”, IEEE Trans.s on Power Systems 5 (2), 635–642 (1990).
  • [4] Z. Du, W. Liu, and W. Fang, “Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method”, IEE Proc.-Gener. Transm. Distrib. 152 (6), 913–918 (2005).
  • [5] R. Różycki and J. Węglarz, “On job models in power management problems”, Bull. Pol. Ac.: Tech. 57(2), 147–151 (2009).
  • [6] K.W. Wang, C.T. Tse, and K.M. Tsang, “Algorithm for power system dynamic stability studies taking account of the variation of load power”, Electric Power Systems Research 46 (3), 221–227 (1998).
  • [7] C.Y. Chung, K.W. Wang, C.T. Tse, and R. Niu, “Powersystem stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs)”, IEEE Trans. on Power Systems 17 (3), 688–693 (2002).
  • [8] K.W. Wang, C.Y. Chung, C.T. Tse, and K.M. Tsang, “Probabilistic eigenvalue sensitivity indices for robust PSS site selection”, IEE Proc.-Gener. Transm. Distrib. 148 (6), 603–609 (2001).
  • [9] J.L. Rueda, D.G. Colom´e, and I. Erlich, “Assessment and enhancement of small signal stability considering uncertainties”, IEEE Trans. on Power Systems 24 (1), 198–207 (2009).
  • [10] Z. Wang and F.L. Alvarado, “Interval arithmetic in power flow analysis”, IEEE Trans. on Power Systems 7 (3), 1341–1349 (1992).
  • [11] B. Das, “Radial distribution system power flow using interval arithmetic”, Electric Power Systems Research 24 (10), 827–836 (2002).
  • [12] P. Wu, H. Cheng, and J. Xing, “The interval minimum load cutting problem in the process of transmission network expansion planning considering uncertainty in demand”, IEEE Trans. Power Syst. 23 (3), 1497–1506 (2008).
  • [13] Y.V. Makarov, V.A. Maslennikov, and D.J. Hill, “Revealing loads having the biggest influence on power system small disturbance stability”, IEEE Trans. on Power Systems 11 (4), 2018–2023 (1996).
  • [14] V.A. Maslennikov, J.V. Milanovic, and S.M. Ustinov, “Robust ranking of loads by using sensitivity factors and limited number of points from a hyperspace of uncertain parameters”, IEEE Trans. Power Syst. 17 (3), 565-570 (2002).
  • [15] P. Kundur, Power System Stability and Control, McGraw-Hill Press, New York, 1994.
  • [16] J. Nocedal and S.J. Wright, Numerical Optimization, Springer New York Press, New York, 1999.
  • [17] O. Alsac, J. Bright, M. Prais, and B. Sttot, “Further developments in LP-based optimal power flow”, IEEE Trans. on Power Systems 5 (3), 697–711 (1990).
  • [18] L. Shengsong, W. Min, and H. Zhijian, “Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic”, IEE Proc.-Gener. Trans. Distrib. 150 (5), 543–547 (2003).
  • [19] R. Gabasov and F.M. Kirillova, “Optimal real-time control for dynamical systems under uncertainty”, Bull. Pol. Ac.: Tech. 55 (1), 7–13 (2007).
  • [20] A. J. Jordan, “Linearization of non-linear state equation”, Bull. Pol. Ac.: Tech. 54 (1), 63–73 (2006).
  • [21] C.Y. Chung, K.W. Wang, C.K. Cheung, C.T. Tse, and A.K. David, “Machine and load modeling in large scale power industries”, Dynamic Modeling Control Applications for Industry Workshop, IEEE Industry Applications 1, 7–15 (1998).
  • [22] W.KWChung, C.T Tse, “Multimachine eigenvalue sensitivities of power system parameters”, IEEE Trans. on Power Systems 15 (2), 741–747 (2000).
  • [23] L. Gang, “Small signal stability analysis and object oriented software developing”, PhD Thesis, Shanghai Jiaotong University, Shanghai, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.