PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid antenna design optimization using shape-preserving response prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An approach to rapid optimization of antennas using the shape-preserving response-prediction (SPRP) technique and coarsediscretization electromagnetic (EM) simulations (as a low-fidelity model) is presented. SPRP allows us to estimate the response of the high-fidelity EM antenna model, e.g., its reflection coefficient versus frequency, using the properly selected set of so-called characteristic points of the low-fidelity model response. The low-fidelity model, corrected by means of SPRP, is subsequently used to predict the optimal design. The design process is cost efficient because most operations are performed on the low-fidelity model. Performance of our technique is demonstrated using a dielectric resonator antenna and two planar wideband antenna examples. In all cases, the optimal design is obtained at a cost corresponding to a few high-fidelity simulations of the antenna under design.
Rocznik
Strony
143--149
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
autor
  • Engineering Optimization & Modeling Center, School of Science and Engineering, Reykjavik University Menntavegur 1, 101 Reykjavik, Iceland, koziel@ru.is
Bibliografia
  • [1] J.L. Volakis, Antenna Engineering Handbook, McGraw-Hill, New York, 2007.
  • [2] A. Petosa, Dielectric Resonator Antenna Handbook, Artech House, New York, 2007.
  • [3] H. Schantz, The Art and Science of Ultrawideband Antennas, Artech House, New York, 2005.
  • [4] C.A. Balanis, Antenna Theory: Analysis and Design, 3rd ed., Wiley, London, 2005.
  • [5] J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, “Space mapping: the state of the art”, IEEE Trans. Microwave Theory Tech. 52 (1), 337–361 (2004).
  • [6] J.M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics”, IEEE Antennas Propag. Mag. 39 (4), 7–21 (1997).
  • [7] A.J. Kerkhoff and H. Ling, “Design of a band-notched planar monopole antenna using genetic algorithm optimization”, IEEE Trans. Antennas Propag. 55 (3), 604–610 (2007).
  • [8] R.L. Haupt, “Antenna design with a mixed integer genetic algorithm”, IEEE Trans. Antennas Prop. 55 (3), 577–582 (2007).
  • [9] M. John and M.J. Ammann, “Wideband printed monopole design using a genetic algorithm”, IEEE Antennas Wireless Propag. Lett. 6, 447–449 (2007).
  • [10] L. Lizzi, F. Viani, R. Azaro, and A Massa, “Optimization of a spline-shaped UWB antenna by PSO”, IEEE Antennas Wireless Propag. Lett. 6, 182–185 (2007).
  • [11] N. Jin and Y. Rahmat-Samii, “Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications”, IEEE Trans. Antennas Propag. 56 (5), 1269–1279 (2008).
  • [12] M. Donelli and A. Massa, “Computational approach based on a particle swarm optimizer for microwave imaging of twodimensional dielectric scatterers”, IEEE Trans. Microw. Theory Tech. 53, 1761–1776 (2005).
  • [13] A. Halehdar, D.V. Thiel, A. Lewis, and M. Randall, “Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system”, Int. J. RF and Microwave CAE 19 (5), 592–597 (2009).
  • [14] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, “Surrogatebased analysis and optimization”, Progress in Aerospace Sciences 41 (1), 1–28 (2005).
  • [15] A.I.J. Forrester and A.J. Keane, “Recent advances in surrogatebased optimization”, Prog. in Aerospace Sciences 45 (1–3), 50–79 (2009).
  • [16] H. Kabir, Y. Wang, M. Yu, and Q.J. Zhang, “High-dimensional neural-network technique and applications to microwave filter modeling”, IEEE Trans. Microwave Theory Tech. 58 (1), 145–156 (2010).
  • [17] Y. Tighilt, F. Bouttout, and A. Khellaf, “Modeling and design of printed antennas using neural networks”, Int. J. RF and Microwave CAE 21 (2), 228–233 (2011).
  • [18] L. Xia, J. Meng, R. Xu, B. Yan, and Y. Guo, “Modeling of 3-D vertical interconnect using support vector machine regression”, IEEE Microwave Wireless Comp. Lett. 16 (12), 639–641 (2006).
  • [19] M. Martinez-Ramon and C. Christodoulou, “Support vector machines for antenna array processing and electromagnetics”, Synthesis Lectures on Computational Electromagnetics 1 (1), 77–81 (2006).
  • [20] V. Miraftab and R.R. Mansour, “EM-based microwave circuit design using fuzzy logic techniques” IEE Proc. Microwaves, Antennas & Propagation 153 (6), 495–501 (2006).
  • [21] J. Zhai, J. Zhou, L. Zhang, and W. Hong, “Behavioral modeling of power amplifiers with dynamic fuzzy neural networks”, IEEE Microwave and Wireless Comp. Lett. 20 (9), 528–530 (2010).
  • [22] G.S.A. Shaker, M.H. Bakr, N. Sangary, and S. Safavi-Naeini “Accelerated antenna design methodology exploiting parameterized Cauchy models”, J. Progress in Electromagnetic Research (PIER B) 18, 279–309 (2009).
  • [23] E.S. Siah, M. Sasena, J.L. Volakis, P.Y. Papalambros, and R.W. Wiese, “Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling”, IEEE Trans. Microwave Theory Tech. 52 (1), 276–285 (2004).
  • [24] I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems”, Int. J. RF and Microwave CAE 20 (5), 492–501 (2010).
  • [25] S. Amari, C. LeDrew, and W. Menzel, “Space-mapping optimization of planar coupled-resonator microwave filters”, IEEE Trans. Microwave Theory Tech. 54 (5), 2153–2159 (2006).
  • [26] G. Crevecoeur, L. Dupre, and R. Van de Walle, “Space mapping optimization of the magnetic circuit of electrical machines including local material degradation”, IEEE Trans. Magn. 43 (6), 2609–2611 (2007).
  • [27] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Space mapping”, IEEE Microwave Magazine 9 (6), 105–122 (2008).
  • [28] J.C. Rautio, “EM-component-based design of planar circuits”, IEEE Microwave Magazine 8 (4), 79–90 (2007).
  • [29] S. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, “Accelerated microwave design optimization with tuning space mapping”, IEEE Trans. Microwave Theory and Tech. 57 (2), 383–394 (2009).
  • [30] S. Koziel, “Shape-preserving response prediction for microwave design optimization”, IEEE Trans. Microwave Theory and Tech. 58 (11), 2829–2837 (2010).
  • [31] RO4000 Series High Frequency Circuit Materials, Data Sheet, Rogers Corporation, Publication #92-004, 2010.
  • [32] CST Microwave Studio, ver. 2010, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, 2010.
  • [33] Z.N. Chen, “Wideband microstrip antennas with sandwich substrate”, IET Microw. Ant. Prop. 2 (6), 538–546 (2008).
  • [34] RT/duroidR 5870 /5880 High Frequency Laminates, Data Sheet, Rogers Corporation, Publication #92-101, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.