PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The implementation and the performance analysis of the multi-channel software-based lock-in amplifier for the stiffness mapping with atomic force microscope (AFM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the implementation of the surface stiffness mapping method with the dynamic measurement mode of atomic force microscopy (AFM) is presented. As the measurement of the higher harmonics of the cantilever’s torsional bending signal is performed, we are able to visualize non-homogeneities of the surface stiffness. In order to provide signal processing with the desired sensitivity and selectivity, the lock-in amplifier-based solution is necessary. Due to the presence of several useful frequencies in the signal, the utilization of several simultaneously processing channels is required. Therefore the eight-channel software-based device was implemented. As the developed solution must be synchronized with the AFM controller during the scanning procedure, the real-time processing regime of the software is essential. We present the results of mapping the surface stiffness and the performance tests results for different working conditions of the developed setup.
Rocznik
Strony
83--88
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
autor
  • Electrotechnical Institute, Division of Electrotechnology and Materials Science, 55/61 M. Skłodowskiej-Curie St., 50-369 Wrocław, Poland, sikora@iel.wroc.pl
Bibliografia
  • [1] G. Binnig, C.F. Quate, and C. Gerber, “Atomic force microscope”, Phys. Rev. Lett. 56, 930 (1986).
  • [2] A. San Paulo and R. Garcia, “Unifying theory of tapping-mode atomic-force microscopy”, Physical Rev. B 66, 041406 (2002).
  • [3] F. J. Giessibl, “AFM’s path to atomic resolution”, Materials Today 8 (5), 32–41 (2005).
  • [4] E. A-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.-A. Schoenenberger, and J.H. Hoh, “Relative microelastic mapping of living cells by atomic force microscopy”, Biophys. J. 74, 1564–1567(1998).
  • [5] P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, and P.K. Hansma, “Using force modulation to image surface elasticities with the atomic force microscope”, Nanotechnology 2, 103–109 (1991).
  • [6] O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, “An atomic force microscope tip designed to measure time-varying nanomechanical forces”, Nature Nanotechnology 2, 507–513 (2007).
  • [7] HarmoniX User Guide, doc. no 004-1024-000, Veeco Instruments Inc., Santa Barbara, 2008.
  • [8] R. Garcia and R. Perez. “Dynamic atomic force microscopy methods”, Surf. Sci. Rep. 47, 197–301 (2002).
  • [9] R. Garcia and A. San Palo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy”, Physical Review B 60 (7), 4961–4967 (1999).
  • [10] A. San Palo and R. Garcia, “Tip-surface forces, amplitude and energy dissipation in amplitude modulation (tapping mode) force microscopy”, Physical Review B 64 (19), 193411 (2001).
  • [11] B.V. Derjaguin, V.M. Muller, and Y.U.P. Toporov, “Effect of contact deformations on the adhesion of particles”, J. Colloid Interface Sci. 53, 314–326 (1975).
  • [12] O. Sahin and N. Erina, “High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy”, Nanotechnology 19, 445717 (2008).
  • [13] O. Sahin, C. F. Quate, O. Solgaard, and A. Atalar, “Resonant harmonic response in tapping-mode atomic force microscopy”, Physical Review B 69, 165416 (2004).
  • [14] O. Sahin, “Time-varying tip-sample force measurements and steady-state dynamics in tapping-mode atomic force microscopy”, Physical Review B 77, 115405 (2008).
  • [15] O. Sahin, G. Yaralioglu, R. Grow, S. F. Zappe, A. Atalar, C. Quate, and O. Solgaard, “High reduction imaging of elastic properties using harmonic cantilevers”, Sensors and Actuators A 114, 183–190 (2004).
  • [16] O. Sahin, A. Atalar, C.F. Quate, and O. Solgaard, “Harmonic cantilevers and imaging methods for atomic force microscopy”, US Patent No. US6935167 (2005).
  • [17] A. Sikora and Ł. Bednarz, “System of advanced signal analysis to measure mechanical properties of surfaces in AFM”, Electrotechnical Review R. 86, 207–210 (2010), (in Polish).
  • [18] A. Sikora and L. Bednarz, “Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy”, Central Eur. J. Physics 9 (2), 372–379 (2011).
  • [19] A. Sikora and Ł. Bednarz, “Utilization of AFM mapping of surface’s mechanical properties in diagnostics of the materials for electrotechnics”, Proc. Electrotechnical Institute 253, 15–25 (2011).
  • [20] A. Sikora, M. Woszczyna, M. Friedemann, M. Kalbac, and F.-J. Ahlers, “The AFM diagnostics of the graphene-based quantum hall devices”, Micron 43, 479–486 (2012).
  • [21] N.Min-Allah, H. Hussain, S.U. Khan, and A.Y. Zomaya, “Power efficient rate monotonic scheduling for multi-core systems”, J. Parallel and Distributed Computing 72 (1), 48–57 (2012).
  • [22] W. Sułek, “Pipeline processing in low-density parity-check codes hardware decoder”, Bull. Pol. Ac.: Tech. 59 (2), 149–155 (2011).
  • [23] F. Ino, A. Ogita, K. Oita, and K. Hagihara, “Cooperative multitasking for GPU-accelerated grid systems”, Concurrency Computation Practice and Experience 24 (1), 96–107 (2012).
  • [24] J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, “Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale”, P. Natl. Acad. Sci. USA 103, 4813–4818 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.