PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses a model reference adaptive sliding-mode control of the sensorless vector controlled induction motor drive in a wide speed range. The adaptive speed controller uses on-line trained fuzzy neural network, which enables very fast tracking of the changing speed reference signal. This adaptive sliding-mode neuro-fuzzy controller (ASNFC) is used as a speed controller in the direct rotor-field oriented control (DRFOC) of the induction motor (IM) drive structure. Connective weights of the controller are trained on-line according to the error between the actual speed of the drive and the reference model output signal. The rotor flux and speed of the vector controlled induction motor are estimated using the model reference adaptive system (MRAS) – type estimator. Presented simulation results are verified by experimental tests performed on the laboratory-rig with DSP controller.
Rocznik
Strony
61--70
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press, New York, 1998.
  • [2] M.P. Kazmierkowski, F. Blaabjerg, and R. Krishnan, Control in Power Electronics – Selected Problems, Academic Press, New York, 2002.
  • [3] J.W. Finch and D. Giaouris, “Controlled AC electrical drives”, IEEE Trans. Industrial Electronics 55 (2), 481–491 (2008).
  • [4] F.J. Lin, R.F. Fung, and R.J. Wai, “Comparison of slidingmode and fuzzy neural network control for motor-toggle servomechanism”, IEEE Trans. Mechatronics 3 (4), 302–318 (1998).
  • [5] F.J. Lin, C.H. Lin, and P.H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive”, IEEE Trans. on Fuzzy Systems 9 (5), 751–759 (2001).
  • [6] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, “Adaptive neuro-fuzzy control of the sensorless induction motor drive system”, 12th Int. Power Electronics and Motion Control Conf. EPE-PEMC’2006 1, 1836–1841 (2006).
  • [7] T. Orlowska-Kowalska and K. Szabat, “Control of the drive system with stiff and elastic couplings using adaptive neurofuzzy approach”, IEEE Trans. Ind. Electronics 54 (1), 228–240 (2007).
  • [8] T. Orlowska-Kowalska and K. Szabat, “Damping of torsional vibrations in two-mass system using adaptive sliding neurofuzzy approach”, IEEE Trans. Industrial Informatics 4 (1), 47–57 (2008).
  • [9] T. Orlowska-Kowalska, Sensorless Induction Motor Drives, Wroclaw University of Technology Press, Wroclaw, 2003.
  • [10] J. Holtz, “Sensorless control of induction machines – with or without signal injection?”, IEEE Trans. Ind. Electronics 53 (1), 7–30 (2006).
  • [11] S. Tamai, H. Sugimoto, and Y. Masao, “Speed sensorless vector control of im with model reference adaptive system”, IEEE Industry Appl. Society 27th Annual Meeting IAS’1987 1, 189–195 (1987).
  • [12] S.C. Schauder, “Adaptive speed identification for vector control of induction motors without rotational transducers”, IEEE Trans. Industry Applications 28 (5), 1054–1061 (1992).
  • [13] M. Rashed and A.F. Stronach, “A stable back-EMF MRASbased sensorless low-speed induction motor drive insensitive to stator resistance variation”, IEEE Proc. – Electric Power Applications 151 (6), 685–693 (2004).
  • [14] M. Morawiec, Z. Krzeminski, and A. Lewicki, “Voltage multiscalar control of induction machine supplied by current source converter”, IEEE Int. Symposium on Industrial Electronics (ISIE) 1, CD-ROM (2010).
  • [15] H. Kubota, K. Matsuse, and T. Nakano, “DSP-based speed adaptive flux observer of induction motor”, IEEE Trans. Industry Applications 29 (2), 344–348 (1993).
  • [16] T. Orlowska-Kowalska, P. Wojsznis, and C.T. Kowalski, “Dynamical performances of sensorless induction motor drive with different flux and speed observers”, Proc. 10th Int. Conf. EPE’2001 1, CD-ROM (2001).
  • [17] T. Orlowska-Kowalska and M. Dybkowski, “Dynamical properties of induction motor drive with novel MRAS estimator”, Electrical Review 82 (11), 35–38 (2006).
  • [18] H. Kubota and Y. Tamura, “Stator resistance estimation for sensorless induction motor drives under regenerating condition”, Proc. IEEE Industrial Electronics Society Conf. IECON’2002 1, 426–430 (2002).
  • [19] M. Saejia and S. Sangwongwanich, “Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation”, IEEE Trans. Industrial Electronics 53 (1), 163–177 (2006).
  • [20] T. Orlowska-Kowalska and M. Dybkowski, “Stator currentbased mras estimator for a wide range speed-sensorless induction motor drive”, IEEE Trans. Industrial Electronics 57 (4), 1296–1308 (2010).
  • [21] R.R. Yager and D.P. Filev, Essentials of Fuzzy Modeling and Control, John Wiley & Sons, New York, 1994.
  • [22] S. Bogosyan, M. Barut, and M. Gokasan, “Braided extended kalman filters for sensorless estimation in induction motors at high-low/zero speed”, IET Proc. – Control Theory and Applications 1 (4), 987–998 (2007).
  • [23] T. Żabiński and L. Trybus, “Tuning P-PI and PI-PI controllers for electrical servos”, Bull Pol Ac.: Tech 58 (1), 51–58 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.