PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat effects measurements in process of dynamic crash of polymer composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the work, the attempt to determine the influence of loading rate on temperature of the surface of the crushed composite energy absorbing elements was undertaken. The specimens made of epoxy composites reinforced with glass fabrics and carbon fabrics of the structures [(0/90)T ]n were subjected to dynamic investigations. Thermovision investigations were conducted during energy absorbing tests. A thermovision camera enables the measurement of the temperature on the whole surface of the specimen visible in the camera lens while the measurement with the use of thermocouple is only local and has great heat inertia. During the investigations, the increase of specimen temperature related to impact velocity occurs. The temperature increase is caused by friction between the particles of the crushed specimen and by friction between the specimen and the support of the strength machine. At high loading rates, the increase of temperature on the surface of the specimens was significantly greater than the softening temperature of the epoxy resin E-53.
Rocznik
Strony
25--30
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
autor
autor
  • Department of Mechanics and Applied Computer Science, Military Academy of Technology 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland, pbogusz@wat.edu.pl
Bibliografia
  • [1] M.R. Schultz, “Energy absorption capacity of graphite-epoxy composites tubes”, PhD. Thesis, Engineering Mechanics Institute, Blacksburg, 1998.
  • [2] A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, and D.P. Papapostolou, “On the response of thin-walled CFRP composite tubular components subjected static and dynamic axial compressive loading: experimental”, Composite Structures 69 (4), 407–420 (2005).
  • [3] D.W. Schmueser and L.E. Wickliffe, “Impact energy absorption of continuous fiber tubes”, J. Eng.Materials and Technology, Trans. ASME 109 (1), 72–77 (1987).
  • [4] G.L. Farley, “The effects of crushing speed on the energyabsorption capability of composite tubes”, J. Composite Materials 25 (70), 1314–1329 (1991).
  • [5] A.H. Fairfull and D. Hull, “Energy absorption of polymer matrix composite structures: frictional effects”, Structural Failure 1, 255–279 (1989).
  • [6] R. Keal, “Post failure energy absorbing mechanisms of filament wound composite tubes”, Ph.D. Thesis, University of Liverpool, Liverpool, 1983.
  • [7] P.H. Thornton, “Energy absorption in composite structures”, J. Composite Materials 13 (3), 247–262 (1979).
  • [8] P.H. Thornton and P.J. Edwards, “Energy absorption in composite tubes”, J. Composite Materials 16 (6), 521–545 (1982).
  • [9] P.H. Thornton, J.J. Harwood, and P. Beardmore, “Fiberreinforced plastic composites for energy absorption purposes”, Composite Science and Technology 24 (4), 275–298 (1985).
  • [10] G.L. Farley, “Energy absorption of composite materials”, J. Composite Materials 17 (3), 267–279 (1983).
  • [11] G.L. Farley, Relationship Between Mechanical-Property and Energy-Absorption Trends 0/±452, 0/±752 for Composite Tubes, NASA-TP-3284, 1992.
  • [12] P. Gotowicki, “Influence of the structures of selected composites on the energy absorption capability”, Ph.D. Thesis, Military University of Technology, Warsaw, 2008, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.