PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient stability analysis and control of power systems with considering flux decay by energy function approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, transient stability of power systems with structure preserving models is considered. A Hamiltonian function which can be regarded as a Lyapunov function for the system is proposed. Based on this, the influence of flux decay dynamics, especially during a fault, on transient stability is analyzed. With the increase of load power, the variation of stability boundary in the rotor angle/Eq plane is shown. The Energy-based excitation control, aiming at injecting additional damping into the post-fault system may reduce the critical clearing time (CCT). This can be demonstrated by the comparison of different flux decay dynamics in the fault-on condition, and the reason is illustrated by the relationship between rotor angle/Eq and the stability boundary. An improved control strategy is proposed and applied to increase the CCT. Simulation results verify that improvement is obtained both in transient stability and dynamic performance.
Rocznik
Strony
3--8
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
autor
  • School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, doliyalu@msn.com
Bibliografia
  • [1] P. Kundur, Power System Stability and Control, McGraw-Hill, New York, 1994.
  • [2] N. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE, New York, 2000.
  • [3] T. Kaczorek, “Improvement in the efficiency of the distributed power systems”, Bull. Pol. Ac.: Tech. 57 (4), 369–374 (2009).
  • [4] Q. Lu, Y. Sun, Z. Xu, and T. Mochizuki, “Decentralized nonlinear optimal excitation control”, IEEE Trans. Power Syst. 11 (4), 1957–1962 (1996).
  • [5] Q. Lu, Y. Sun, and S. Wei, Nonlinear Control Systems and Power System Dynamics, Kluwer Academic Publishers, Boston, 2001.
  • [6] S. Arimoto, “Passivity- based control”, Proc. IEEE ICRA’00 Conf. 1, 227–232 (2000).
  • [7] A. Van Der Schaft, L2-gain and Passivity Techniques in Nonlinear Control, Springer-Verlag Press, Berlin, 2000.
  • [8] Y. Wang, G. Feng, D. Cheng, and Y. Liu, “Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units”, Automatica 42 (7), 1121–1132 (2006).
  • [9] V. Azbe and R. Mihalic, “The control strategy for an IPFC based on the energy function”, IEEE Trans. Power Syst. 22 (4), 1662–1669 (2008).
  • [10] Y. Zou, M. Yin, and H. Chiang, “Theoretical foundation of the controlling UEP method for direct transient-stability analysis of network-preserving power system models”, IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 50 (10), 1324–1336 (2003).
  • [11] D. Fang and Y. Qin, “A new trajectory sensitivity approach for computations of critical parameters”, Electr. Power Syst. Res. 77 (3–4), 303–307 (2007).
  • [12] R. Mihalic and U. Gabrijel, “Transient stability assessment of systems comprising phase-shifting FACTS devices by direct methods”, Int. J. Electr. Power and Energy Syst. 26 (6), 445–453 (2004).
  • [13] A. Abdelaziz, M. Abu-Elnaga, and M. Elsharkawy, “Voltage stability assessment of multi-machine power systems using energy function and neural networks techniques”, Electr. Power Comp. and Syst. 34 (12), 1313–1330 (2006).
  • [14] N. Tsolas, A. Arapostathis, and P. Varaiya, “Structure preserving energy function for power system transient stability analysis”, IEEE Trans. Circ. Syst. 32 (10), 1041–1049 (1985).
  • [15] B. He, X. Zhang and X. Zhao, “Transient stabilization of structure preserving power systems with excitation control via energy-shaping”, Int. J. Electr. Power and Energy Syst. 29 (10), 822–830 (2007).
  • [16] C. Chu and H. Chiang, “Constructing analytical energy functions for network-preserving power system models”, Circ. Syst. Signal Proc. 24 (4), 363–383 (2005).
  • [17] R. Ortega, A. Van Der Schaft, and B. Maschke, “Interconnection and damping assignment passivity-based control of portcontrolled Hamiltonian systems”, Automatica 38 (4), 585–596 (2002).
  • [18] M. Galaz, R. Ortega, A. Bazanella, and A. Stankovic, “An energy-shaping approach to the design of excitation control of synchronous generators”, Automatica 39 (1), 111–119 (2003).
  • [19] Y. Makarov, D. Hill, and I. Hiskens, “Properties of quadratic equations and their application to power system analysis”, Int. J. Electr. Power and Energy Syst. 22 (5), 313–323 (2000).
  • [20] K.L. Praprost and K.A. Loparo, “An energy function method for determining voltage collapse during a power system transient”, IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 41 (10), 635–651 (1994).
  • [21] Y. Sun, X. Li, M. Zhao, and Y. Song, “New Lyapunov function for transient stability analysis and control of power systems with excitation control”, Electr. Power Syst. Res. 57 (2), 123–131 (2001).
  • [22] A. Bazanell and C. Conceicao, “Transient stability improvement through excitation control”, Int. J. Robust and Nonlinear Control 14 (9–10), 891–910 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0071-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.