PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Konferencja “Integrated Optics – Sensor, Sensing and Methods” (IOS 2011) Szczyrk, luty 2011
Języki publikacji
EN
Abstrakty
EN
Recent environmental issues have accelerated the use of more efficient and energy saving technologies in renewable energy systems. High power high efficiency boost DC/DC converters for the use in photovoltaic, fuel cell systems are discussed in this paper from the viewpoint of power losses and efficiency. State of the art converters with switching frequency within the range of 25 kHz with IGBTs to 100 kHz with power MOSFETs and the highest efficiency close to 98%, depending on the load conditions, is considered. A comparison and discussion of the highest efficiency high power DC/DC boost converters is also presented in this paper.
Rocznik
Strony
499--506
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineering, Department of Automatic Control Engineering and Electronics, Bialystok University of Technology, 45D Wiejska St. 15-351 Bialystok, Poland, dawid@pb.edu.pl
Bibliografia
  • [1] T Kerekes, R. Teodorescu, P. Rodr´ıguez, G. V´azquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology”, IEEE Trans. on Indust. Electronics 58 (1), 184–191 (2011).
  • [2] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Stepup switchingmode converter with high voltage gain using a switched-capacitor circuit”, Circuits and Systems I: Fundamental Theory and Applications, IEEE Trans. on Circuits and Systems 50, 1098–1102 (2003).
  • [3] K.K. Law, K.W.E. Cheng, and Y.P.B. Yeung, “Design and analysis of switched-capacitor-based step-up resonant converters”, Circuits and Systems I: Regular Papers, IEEE Trans. on Circuit Systems 52, 943–948 (2005).
  • [4] W. Rong-Jong and D. Rou-Yong, “High step-up converter with coupled inductor”, Power Electronics, IEEE Trans. on Power Electronics 20, 1025–1035 (2005).
  • [5] R.J. Wai and R.Y. Duan, “High-efficiency DC/DC converter with high voltage gain”, Electric Power Applications, IEE Proc. 152, 793–802 (2005).
  • [6] B. Ju-Won, R. Myung-Hyo, K. Tae-Jin, Y. Dong-Wook, and K. Jong-Soo, “High boost converter using voltage multiplier”, Indust. Electronics Society, 31st Annual Conf. IEEE 1, 567–572 (2005).
  • [7] M. Nymand, R. Tranberg, M.E. Madsen, U.K. Madawala, and M.A.E. Andersen, “What is the best converter for low voltage fuel cell applications- a buck or boost?”, Proc. IEEE IECON 1, 959–964 (2009).
  • [8] M. Nymand and M.A.E. Andersen, “High-efficiency isolated boost dc-dc converter for high-power low-voltage fuel cell applications”, IEEE Trans. Indust. Electronics 57 (2), 505–514 (2010).
  • [9] M. Nymand and M.A.E. Andersen, “A new approach to high efficiency in isolated boost converters for high-power lowvoltage fuel cell applications”, Proc. EPE-PEMC 1, 127–131 (2008).
  • [10] M. Nymand and M.A.E. Andersen, “New primary-parallel boost converter for high-power high gain applications”, Proc. APEC 1, 35–39 (2009).
  • [11] M. Nymand, U.K. Madawala, M.A.E. Andersen, B. Carsten, and O.S. Seiersen, “Reducing ac winding losses in high-current high-power inductors”, Proc. IEEE IECON 1, 774–778 (2009).
  • [12] W. Li. and X. He, “An interleaved winding-coupled boost converter with passive lossless clamp circuits”, IEEE Trans. on Power Electronics 22 (4), 1499–1507 (2007).
  • [13] W. Li. and X. He, “A family of interleaved DC–DC converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions”, IEEE Trans. on Power Electronics 23 (4), 1791–1801 (2008).
  • [14] K. Hirachi, M. Yamanaka, K. Kajiyama, and S. Isokane, “Circuit configuration of bidirectional DC/DC converter specific for small scale loading system”, Proc. PCC-Osaka 2, 603–609 (2002).
  • [15] S. Dwari, S. Jayawant, T. Beechner, S.K. Miller, A. Mathew, M. Chen, J. Riehl, and J. Sun, “Dynamics characterization of coupled-inductor boost DC-DC converters”, Proc. Computers in Power Electronics, IEEE Workshop 1, 264–269 (2006).
  • [16] S. Pirog , R. Stala, and L. Stawiarski, “Power electronic converter for photovoltaic systems with the use of FPGA-based real-time modeling of single phase grid-connected systems”, Bull. Pol. Ac.: Tech. 57 (4), 345–354 (2009).
  • [17] Y. Jiang and J. Pan, “Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter system”, Bull. Pol. Ac.: Tech. 57 (4), 355–361 (2009).
  • [18] C.M.C. Duarte, and I. Barbi, “An improved family of ZVSPWM active clamping DC-to-DC converters”, IEEE Trans. Power Electronics 17 (1), 1–7 (2002).
  • [19] W. Rong-Jong, and D. Rou-Yong, “High step-up converter with coupledinductor”, IEEE Trans. on Power Electronics 20 (5), 1025–1035 (2005).
  • [20] W. Rong-Jong, and D. Rou-Yong, “High-efficiency power conversion for low power fuel cell generation system”, IEEE Trans. Power Electronics 20 (4), 847–856 (2005).
  • [21] S. Dwari and L. Parsa, “A novel high efficiency high power interleaved coupled-inductor boost DC-DC converter for hybrid and fuel cell electric vehicle”, Proc. IEEE Vehicle Power Propulsion Conf. 1, 399–404 (2007).
  • [22] S. Dwari and L. Parsa, “An efficient high-step-up interleaved DC–DC converter with a common active clamp”, IEEE Trans. on Power Electronics 26 (1), 66–78 (2011).
  • [23] P. Zacharias, B. Sahan, S.V. Ara´ujo, F.L.M. Antunes, and R.T. Bascop´e, “Analysis and proposition of a PV module integrated converter with high voltage gain capability in a nonisolated topology”, 7th Int. IEEE Conf. on Power Electronics 1, CD-ROM (2007).
  • [24] P. Klimczak and S. Munk-Nielsen, “High efficiency boost converter with three state switching cell”, Int. Exhibition & Conf. Power Electronics, Intelligent Motion, Power Quality PCIM 1, 143–148 (2009).
  • [25] P. Klimczak, “Modular power electronic converters in the power range 1 to 10 kW”, PhD Thesis, Aalborg University, Denmark Institute of Energy Technology, Aalborg, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.