PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power electronic systems as a crucial part of Smart Grid infrastructure - a survey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Konferencja “Integrated Optics – Sensor, Sensing and Methods” (IOS 2011) Szczyrk, luty 2011
Języki publikacji
EN
Abstrakty
EN
This article gives a tutorial overview of the most important issues related to the use of power electronic systems in power engineering, with respect to the urgent need for modernization of existing grids in the direction of intelligent networks. The main problems and conditions bound up with the construction of Smart Grids and the location, as well as functioning in them of the most important power electronic systems are presented here. Special attention is directed therein to the potential possibilities of so-called ‘smart’ transformers and V2G and V2H technologies.
Rocznik
Strony
455--473
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
autor
autor
  • Institute of Electrical Engineering, University of Zielona Góra, 50 Podgórna St., 65-246 Zielona Góra, Poland, rstrzele@am.gdynia.p
Bibliografia
  • [1] B. Sørensen, Renewable Energy. Volume I: Renewable Energy Origins and Flows. Volume II: Renewable Energy Technologies I, Volume III: Renewable Energy Technologies II, Volume IV: Renewable Energy in Society, Earthscan, Cambridge, 2011.
  • [2] G. Benysek, Improvement in the Quality of Delivery of Electrical Energy Using Power Electronics Systems, Springer-Verlag, London, 2007.
  • [3] R. Strzelecki and G. Benysek, Power Eectronics in Smart Electrical Energy Networks, Springer-Verlag, London, 2008.
  • [4] C. Gellings, “Smart power delivery: a vision for the future”, EPRI J. 1, CD-ROM (2003).
  • [5] J.Wang, A.Q. Huang, W. Sung, Y. Liu, and B.J. Baliga, “Smart grid technologies”, IEEE Indust. Electronics Magazine 3 (2), 16–23 (2009).
  • [6] J. Machowski, “Flexible transmission systems – FACTS”, Electrotechnical Review 78 (7), 189–196 (2002), (in Polish).
  • [7] V.K. Sood, HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Springer-Verlag, London, 2004.
  • [8] F. Blaabjerg and Z. Chen, Power Electronics for Modern Wind Turbines, Morgan & Claypool, San Rafael, 2006.
  • [9] L. Wang, Ch. Singh, and A. Kusiak, Wind Power Systems. Applications of Computational Intelligence, Springer-Verlag, London, 2010.
  • [10] S. Heier and R. Waddington, Grid Integration of Wind Energy Conversion Systems, Wiley, Blackwellm, 2006.
  • [11] M.G. Sim˜oes, Renewable Energy Systems. Design and Analysis with Induction Generators, CRC Press, London, 2004.
  • [12] I. Boldea, Variable Speed Generators, Taylor & Francis Group, London, 2006.
  • [13] A. Sikorski and A. Kuźma, “Cooperation of induction squirrelcage generator with grid connected AC/DC/AC converter”, Bull. Pol. Ac.: Tech. 57 (4), 317–322 (2009).
  • [14] D. Schulz, “Improved grid integration of wind energy systems”, Bull. Pol. Ac.: Tech. 57 (4), 311–315 (2009).
  • [15] I. Wasiak and Z. Hanzelka, “Integration of distributed energy sources with electrical power grid”, Bull. Pol. Ac.: Tech. 57 (4), 297–309 (2009).
  • [16] M.P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics, Academic Press, London, 2002.
  • [17] M. Bobrowska-Rafał, K. Rafał, G. Abad, and M. Jasiński, “Control of PWM rectifier under grid voltage dips”, Bull. Pol. Ac.: Tech. 57 (4), 337–343 (2009).
  • [18] B.K. Bose, Power Electronics and Motor Drives: Advances and Trends, Academic Press, London, 2006.
  • [19] N.P. Quang, Vector Control of Three-Phase AC Machines: System Development in the Practice, Springer-Verlag, London, 2008.
  • [20] A. Emadi, A. Nasiri, and S.B. Bekiarov, Uninterruptible Power Supplies and Active Filters, CRC Press, London, 2005.
  • [21] I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications”, Renewable and Sustainable Energy Reviews 13 (6–7), 1513–1522 (2009).
  • [22] C. Sourkounis, B. Ni, and F. Richter, “Comparison of energy storage management methods to smooth power fluctuations of wind parks”, Electrotechnical Review 85 (10), 196–200 (2009), (in Polish).
  • [23] F. Blaabjerg, Z. Chen, and S.B. Kjaer, “Power electronics as efficiency interface in dispersed power generation systems”, IEEE Trans. on Power Electronics 19 (5), 1184–1194 (2004).
  • [24] Y. Jiang and J. Pan “Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter system”, Bull. Pol. Ac.: Tech. 57 (4), 355–361 (2009).
  • [25] J.P. Dunlop, Photovoltaic Systems, American Technical Publication, New York, 2009.
  • [26] P. Enjeti, L. Palma, and M.H. Todorocic, Power Conditioning Systems for Fuel Cell Applications, John Wiley & Sons, London, 2009.
  • [27] J. Lai, “Power conditioning circuit topologies”, IEEE Ind. Electronics Magazine 3 (2), 24–34 (2009).
  • [28] F.L. Luo, Essential DC/DC Converters, CRC Press, London, 2006.
  • [29] S. Jalbrzykowski and T. Citko, “A bidirectional DC-DC converter for renewable energy systems”, Bull. Pol. Ac.: Tech. 57 (4), 363–368 (2009).
  • [30] M. Calais, J. Myrzik, T. Spooner, and V.G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems – an overview”, Conf. Proc. PESC 4, 23–27 (2000).
  • [31] Y. Huang, M. Shen, F.Z. Peng, and J. Wang, “Z-Source inverter for residential photovoltaic systems”, IEEE Trans. on Power Electronics 21 (6), 176–182 (2006).
  • [32] M.K. Kazimierczuk, High Frequency Magnetics Components, John Wiley & Sons, London, 2009.
  • [33] A. Emadi, Integrated Power Electronic Converters and Digital Control, CRC Press, London, 2009.
  • [34] W. Liu, J. Dirker, and J.D. van Wyk, “Power density improvement in integrated electromagnetic passive modules with embedded heat extractors”, IEEE Trans. on Power Electronics 23 (6), 3142–3150 (2008).
  • [35] R. Lasseter and P. Paigi, “Microgrid: a conceptual solution”, Conf. Proc. PESC 6, 4285–4290 (2004).
  • [36] T. Ise, “Advantages and circuit configuration of a DC microgrid”, Proc. Symposium on Microgrids 1, CD-ROM (2006).
  • [37] A. Kawamura, M. Pavlovsky, and Y. Tsuruta, “State-of-theart. High power density and high efficiency DC-DC chopper circuits fot HEV and FCEV applications”, Electrotechnical Review 84 (9), 1–13 (2008).
  • [38] A. Ghosh and G. Ledwich, Power Quality Enhancement Using Custom Power Devices, Kluwer Academic Pub., New York, 2002.
  • [39] G. Benysek, “Improvement in the efficiency of the distributed power systems”, Bull. Pol. Ac.: Tech. 57 (4), 369–374 (2009).
  • [40] A. Carlsson, The Back to Back Converter – Control and Design, Lund Institute of Technology, Lund, 1998.
  • [41] B.M. Han, S.T. Baek, B.Y. Bae, and J.Y. Choi, “Back to back HVDC system using a 36-step voltage source converter”, IEEE Proc. Generation, Transmission and Distribution 153 (6), 677–683 (2006).
  • [42] N. Flourentzou, V.G. Agelidis, and G.D. Demetriades, “VSC based HVDC power transmission systems: an overview”, IEEE Trans. on Power Electronics 24 (3), 592–602 (2009).
  • [43] G. Błajszczak, M. Wasiluk-Hassa, M. Malinowski, M.P. Kaźmierkowski, and M. Jasiński, “The state of the art of HVDC transmission systems”, Electrical Power Engineering 7 (1), CD-ROM (2011).
  • [44] M. Hagiwara, H. Fujita, and H. Akagi, “Performance of a selfcommutated BTB HVDC link system under a single-line to ground fault condition”, IEEE Trans. on Power Electronics 18 (1), 278–285 (2003).
  • [45] J. Rodriguez, J.S. Lai, and F.Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications”, IEEE Trans. on Electronics 49 (4), 724–738 (2002).
  • [46] B. Wu, High-Power Converters and AC Drives, John Wiley & Sons, London. 2006.
  • [47] M. Hagiwara, K. Wada, H. Fujita, and H. Akagi, “Dynamic behavior of a 21 level BTB based power flow controller under single-line-to-ground fault conditions”, IEEE Trans. on Indust. Applications 43 (5), 1379–1387 (2007).
  • [48] Z. Jiang and H. Yu, “Hybrid DC and AC linked microgrids: towards integration of distributed energy resources”, IEEE Energy 2030 Conf. 1, 1–8 (2008).
  • [49] H. Akagi, E.H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, John Wiley & Sons, London, 2007.
  • [50] H. Fujita and H. Akagi, “Unified power quality conditioner: the integration of series and shunt active filter”, IEEE Trans. on Power Electronics 13 (2), 315–322 (1998).
  • [51] M. Aredes, K. Heumann, and E. Watanabe, “An universal active power line conditioner”, IEEE Trans. on Power Delivery 13 (2), 1453–1460 (1998).
  • [52] J. Wang and F.Z. Peng, “Unified power flow controller using the cascade multilevel inverter”, IEEE Trans. on Power Electronics 19 (4), 1077–1084 (2004).
  • [53] T. Jauch, A. Kara, M. Rahmani, and D. Westermann, Power Quality Ensured by Dynamic Voltage Correction, ABB Rev., New York, 1998.
  • [54] C.J. Huang, S.J. Huang, and F.S. Pai, “Design of dynamic voltage restorer with disturbance-filtering enhancement”, IEEE Trans. Power Electronics 18 (5), 1202–1210 (2003).
  • [55] E.R. Ronan, S.D. Sudhoff, S.F. Glover, and D.L. Galloway, “A power electronic-based distribution transformer”, IEEE Trans. on Power Delivery 17 (2), 537–543 (2002).
  • [56] L. Heinemann and G. Mauthe, “The universal power electronics based distribution transformer, an unified approach”, Power Electronics Specialists Conf. – PESC 2, 504–509 (2001).
  • [57] D.D. Chen, “Novel current-mode AC/AC converters with highfrequency AC link”, IEEE Trans. on Indust. Electronics 55 (1), 30–37 (2008).
  • [58] T. Friedli and J.W. Kolar, “Comprehensive comparison of three-phase AC-AC matrix converter and voltage DC-Link back-to-back converter systems”, Proc. IEEE/IEEJ Int. Power Electronics Conf. 1, 1–10 (2010).
  • [59] S. Inoue and H. Akagi, “A bi-directional isolated DC-DC converter as a core circuit of the next-generation medium- voltage power conversion system”, Power Electronics Specialists Conf. PESC 48, 314–320 (2006).
  • [60] V. Staudt, A. Steimel, and H. Wrede, “Konzept eines mobilen elektronischen 110-kV/mittelspan-nungs-leistungstransformators“, Technische Innovationen in Verteilungsnetzen: Vortr¨age der ETG-Fachtagung 1–2, 59–66 (2005).
  • [61] J.J. Wang, A.Q. Huang, S. Woongje, Y. Liu, and B.J. Baliga, “Smart grid technologies. development of 15-kV SiC IGBTs and their impact on utility applications”, IEEE Indust. Electronics Magazine 1, 6 (2009).
  • [62] Directorate-General for Energy and Transport, Eur. Energy and Transport Trends to 2030, European Commission, Brussels, 2007.
  • [63] K. Clement-Nyns, E. Haesen and J. Driesen, “The impact of vehicle-to-grid on the distribution grid”, Electric Power Systems Research 81 (1), 185–192 (2011).
  • [64] H. Lund and W. Kempton, “Integration of renewable energy into the transport and electricity sectors through V2G”, Energy Policy 36 (9), 3578–3587 (2008).
  • [65] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: calculating capacity and net revenue”, J. Power Sources 144 (1), 268–279 (2005).
  • [66] Ch. Guille and G. Gross, “A conceptual framework for the vehicle-to-grid (V2G) implementation”, Energy Policy 37 (11), 4379–4390 (2009).
  • [67] G. Mulder, F. De Ridder, and D. Six, “Electricity storage for grid-connected household dwellings with PV panels”, Solar Energy 84 (7), 1284–1293 (2010).
  • [68] D. Paramashivan Kaundinya, P. Balachandra, and N.H. Ravindranath, “Grid-connected versus stand-alone energy systems for decentralized power – a review of literature”, Renewable and Sustainable Energy Reviews 13 (8), 2041–2050 (2009).
  • [69] R. Miśkiewicz, A. Moradewicz, and M.P. Kaźmierkowski, “Contactless power supply system with bidirectional energy transfer for electric vehicle”, Electrotechnical Review, 8, 212–218 (2011), (in Polish).
  • [70] Y. Hanh, M. Khan, L. Xu, G. Yao, L. Zhou, and C. Chen, “A new scheme for power factor correction and active filtering for six-pulse converters loads”, Bull. Pol. Ac.: Tech. 57 (2), 157–169 (2009).
  • [71] W. Jing-Xin and J. Jian-Guo, “Combining the principles of variable structure, direct torque control, and space vector modulation for induction motor fed by matrix converter”, Bull. Pol. Ac.: Tech. 58 (4), 657–663 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.