PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Layered thin film nanostructures of Pd/WO3-x as resistance gas sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Conference “Optical Fibers and Their Applications” in Białowieża, Styczeń 2011
Języki publikacji
EN
Abstrakty
EN
Layered nanostructures of tungsten trioxide WO3-x about 62 nm thick, with a very thin film of palladium (about 3.3 nm) on the top, have been studied for gas-sensing application at temperatures 50.C and 120.130.C and low NO2 and NH3 concentrations in 6%, 30% or 45% relative humidity in the air. Thin film WO3-x nanostructures were obtained by vacuum deposition on a common Si-SiO2 substrate at room temperature and 120.C. The palladium was coated by vacuum evaporation at room temperature and 4 �E 10.6 mbar on WO3-x layers obtained at two different substrate temperatures. The average rate of growth of the films, controlled by a QCM, was 0.1.0.2 nm/s. A multi-channel (four-channel interdigital gold electrodes) planar resistance gas sensor structure was used in the experiments. The surface of the nanostructures was characterized by means of the AFM method. Good sensor results have been observed at these layered nanostructures with an increasing resistance for NO2 molecules and decreasing resistance for NH3 molecules in a humid air atmosphere. The interaction and recovery speed were higher in the case of the nanostructure obtained at room temperature.
Rocznik
Strony
401--407
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Department of Optoelectronics, Silesian University of Technology, 2 Krzywoustego St., 44-100 Gliwice, Poland, kazimierz.gut@polsl.pl
Bibliografia
  • [1] Y.P. Zhao, S.H. Li., S.B. Chaney, S. Shanmukh, J.G. Fan, R.A. Dluhy, and W. Kisaalita, “Designing nanostructures for sensor applications”, J. Electronic Materials 35, 846–851 (2006).
  • [2] B. Licznerski, K. Nitsch, H. Teterycz, T. Sobański, and K. Wiśniewski, “Characterisation of electrical parameters for multilayer SnO2 gas sensors”, Sensors and Actuators B 103, 69–75 (2004),.
  • [3] S.J. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, and W. Włodarski, “Layered SAW hydrogen sensor with modified tungsten trioxide selective layer”, Sensors and Actuators B 108, 553–557 (2005).
  • [4] K. Zakrzewska, M. Radecka, “TiO2 – SnO2 system for gas sensing – photodegradation of organic contaminants”, Thin Solid Films 515, 8322–8338 (2007).
  • [5] W. Jakubik, “Investigations of thin film structures of WO3 and WO3 with Pd for hydrogen detection in a surface acoustic wave sensor system”, Thin Solid Films 515, 8345–8350 (2007).
  • [6] H. Wohltjen, W.R. Barger, A. Snow, and L. Jarvis, “A vaporsensitive chemiresistor fabricated with planar microelectrodes and a Langmuir-Blodgett organic semiconductor film”, IEEE Trans. on Electron Devices ED-32 (7), 1170–1174 (1985).
  • [7] T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37 (1–2), 187–194 (2007).
  • [8] E. Maciak, Z. Opilski, T. Pustelny, and M. Bednorz, “An optical detection NH3 gas by means of a-WO3 thin films based on SPR technique”, Journal de Physicque IV 129, 131–136 (2005).
  • [9] E. Maciak and Z. Opilski, “Transition metal oxides covered Pd film for optical H2 gas detection”, Thin Solid Films 515, 8351–8355 (2007).
  • [10] E. Maciak and Z. Opilski, “Hydrogen gas detection by means of a fiber optic interferometer sensor”, J. Phys. France IV 137, 135–140 (2006).
  • [11] T. Pustelny, J. Ignac-Nowicaka, and Z. Opilski, “Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method”, Optica Applicata 34 (4), 563–572 (2004).
  • [12] C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer”, Optica Applicata 34 (4), 507–514 (2004).
  • [13] W. Jakubik, M. Urbańczyk, S. Kochowski, and J. Bodzenta, “Palladium and phthalocyanine bilayer films for hydrogen detection in surface acoustic wave sensor system”, Sensors and Actuators B 96, 321–328 (2003).
  • [14] W. Jakubik, “Hydrogen detection by single and bilayer sensor structures in Surface Acoustic Wave system”, Journal de Physique IV 129, 117–120 (2005).
  • [15] W. Jakubik, M. Urbańczyk, S. Cular, and V. Bhethanabotla, “Acoustoelectric effect in hydrogen surface acoustic wave sensors with phthalocyanine – palladium sensing bi-layers”, ECS.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.