PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of the diffraction pattern during the transition from the near-field toward the far-field region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Conference “Optical Fibers and Their Applications” in Białowieża, Styczeń 2011
Języki publikacji
EN
Abstrakty
EN
In the paper we experimentally and theoretically analyze diffraction of light propagating through a microstructured optical fiber on the fiber end face. In the measurements the diffracting light is spatially inhomogeneous and the diffracting object is a solid-state core with a triangular shape. Application of optical system enables detailed experimental investigations of evolution diffraction pattern in the near-field region, in particular, rotation of the observed structure while departing from the fiber end. The experimental results are confirmed with theoretical simulations based on the theory of the Fresnel diffraction.
Rocznik
Strony
389--393
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
  • Center for Magneto-Optical Research, Institute of Physics, Jagiellonian University, 4 Reymonta St., 30-059 Kraków, Poland, pustelny@uj.edu.pl
Bibliografia
  • [1] P. Russell, “Photonic crystal fibers”, Science 299, 358–362 (2003).
  • [2] T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibers: an efficient modal model”, J. Lightwave Technol. 17, 1093–1101 (1999).
  • [3] T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly singlemode photonic crystal fiber”, Opt. Lett. 22, 961–963 (1997).
  • [4] J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. de Sandro, “Large mode area photonic crystal fiber”, Elect. Lett. 34, 1347–1348 (1998).
  • [5] T. M. Monro and H. Ebendorff-Heidepriem, ”Progress in microstructured optical fibers” Annu. Rev. Mater. Res. 36, 467–495 (2006).
  • [6] T.A. Birks, D. Mogilevstev, J.C. Knight, and P.St.J. Russell, “Dispersion compression using single material fibers”, Photon. Technol. Lett. 11, 674–676 (1999).
  • [7] A. Ferrando, E. Silvestre, J. Miret, and P. Andr´es, ‘Nearly zero ultraflattened dispersion in photonic crystal fibers”, Opt. Lett. 25, 790–792 (2000).
  • [8] J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm”, Opt. Lett. 25, 25–27 (2000).
  • [9] I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, and J.G. Fujimoto, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber”, Opt. Lett. 26, 608–10 (2001).
  • [10] R.E. Drullinger, S.A. Diddams, K.R. Vogel, C.W. Oates, and E.A. Curtis, “All-optical atomic clocks”, Proc. 2001 IEEE Int. Freq. Control Symp. 1, 69–75 (2001).
  • [11] T.M. Monro, S. Warren-Smith, E.P. Schartner, A. Francoiset, S. Heng, H. Ebendorff-Heidepriem, and S.V. Afshar, “Sensing with suspended-core optical fibers”, Opt. Fiber Technol. 16, 343–356 (2010).
  • [12] T.R. Woliński, P. Lesiak, and A.W. Domański, “Polarimetric optical fiber sensors of a new generation for industrial applications”, Bull. Pol. Ac.: Tech. 56, 125–132 (2008).
  • [13] F. Benabid, J.C. Knight, G. Antonopoulos, and P.St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber”, Science 298, 399–402 (2002).
  • [14] P.S. Light, F. Benabid, F. County, M. Maric, and A.N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber”, Opt. Lett. 32, 1323–1325 (2007).
  • [15] M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A.S. Zibrov, V. Vuletic and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber”, Phys. Rev. Lett. 102, 203902 (2009).
  • [16] K. Kishor, R.K. Sinha, A.D. Varshney, and J. Singh, “Characterization of specially designed polarization maintaining photonic crystal fiber from far field radiation patterns”, Opt. Commun. 283, 5007–5011 (2010).
  • [17] M. Szustakowski, N. Palka, and W. Grabiec, “Simple method for determination of photonic crystal fibers geometry”, Proc. of SPIE 6588, 65880M-1 (2007).
  • [18] S. K. Varshney and R.K. Sinha, “Characterization of photonic crystal fibers from far field measurements”, J. Microwaves and Optoelectr. 2, 32–42 (2002).
  • [19] W.A. Gambling, D.N. Payne, H. Matsumura, and R.B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibres by observation of the far-field pattern”, IEE J. Microwaves Optic Acoust. 1, 13–17 (1976).
  • [20] A.K. Ghatak, R. Srivastava, I.F. Faria, K. Thyagarajan, and R. Tewari, “Accurate method for characterizing single-mode fibers – theory and experiment”, Electr. Lett. 19, 97–98 (1983).
  • [21] A.C. Boucouvalas, “Use of far-field radiation-pattern to characterize single-mode symmetric slab waveguides”, Electr. Lett. 19, 120–121 (1983).
  • [22] G.S. Wiederhecker, C.M.B. Cordeiro, F. County, F. Benabid, S.A. Maier, J.C. Konight, C.H.B. Cruz, and H.L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core”, Nat. Photon. 1, 115–118 (2007).
  • [23] T. M. Monro, D.J. Richardson, and P.J. Bennett, Electr. Lett. 35, 1188–1189 (1999).
  • [24] T. Pustelny and M. Grabka, Acta Phys. Pol. A 114, A113–A118 (2008).
  • [25] J. Wojcik, P. Mergo, M. Makara, K. Poturaj, L. Czyzewska, J. Klimek, and A. Walewski, “Technology of suspended core microstructured optical fibers for evanesced wave and plasmon resonance optical fiber sensors”, Proc. SPIE 6990, 6990T (2008).
  • [26] N.A. Mortensen and J.R. Folkenberg, “Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena”, Opt. Express 10, 475–481 (2002).
  • [27] M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber”, Acta Phys, Pol. A 18, 1127–1132 (2010).
  • [28] B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, New Jersey, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.