PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2.1 žm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Conference “Optical Fibers and Their Applications” in Białowieża, Styczeń 2011
Języki publikacji
EN
Abstrakty
EN
Tm3+/Ho3+ – doped antimony-silicate optical fibre with 2.1 ěm emission has been presented. Luminescence corresponding to 5I7 --> 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 ěm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the F¨orster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) --> 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 – 2.2 ěm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 ěm.
Rocznik
Strony
381--387
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
autor
autor
  • Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland, d.dorosz@pb.edu.pl
Bibliografia
  • [1] M. Eichhorn, “Quasi-three-level solid-state lasers in near and mid infrared based on trivalent rare earth ions”, Appl. Phys. B 93, 269–316 (2008)
  • [2] B.M. Walsch, “Review of Tm and Ho Materials”, Spectroscopy and Lasers, Laser Physics 19 (4), 855–866 (2009).
  • [3] A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review”, C. R. Physique 8, 1100–1128 (2007).
  • [4] A. Zając, D. Dorosz, M. Kochanowicz, M. Skórczakowski, and J. Świderski, “Fibre lasers – conditioning constructional and technological”, Bull. Pol. Ac.: Tech 58 (4), 491–502 (2010).
  • [5] D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO2:20ZnO:5Na2O (mol%) glasses: effect of Ho and Yb co-doping”, J. Non-Cryst. Solid 354, 1955–1961 (2008).
  • [6] T. Pustelny, C. Tyszkiewicz, and K. Barczak, “Optical fiber sensors of magnetic field applying Faraday’s effect”, Optica Applicata 32 (2–3), 469–475 (2003).
  • [7] R. Balda, J. Fern´andez, S.G. Revilla, and J.M. Navarro, Opt. Express 15, 6750 (2007).
  • [8] J. G. B¨unzli and SvV. Eliseeva, “Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion”, J. Rare Earths 28 (6), 824 (2010).
  • [9] M. Wanga L. Yi, G. Wanga, L. Hua, and J. Zhanga, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation”, Solid State Communications 149, 1216–1220 (2009).
  • [10] B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre”, Opt. Express 15, 6546 (2007).
  • [11] S.D. Jackson and S. Mossman, “High-power diode-claddingpumped Tm 3+, Ho 3+-doped silica fibre laser”, Appl. Phys. B 77, 489–493 (2003).
  • [12] B. Peng and T. Izumitani, “Blue, green and 0.8 μm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+”, Opt. Mater. 4, 797–799 (1995).
  • [13] D.M. Shi, Q.Y. Zhang, G.F. Yang, and Z.H. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbOGeO2 glasses codoped with Tm3+ and Ho3+”, J. Non-Cryst. Solids 353, 1508–1514 (2007).
  • [14] Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser”, Opt. Express. 16 (14), 10690–10695 (2008).
  • [15] T. Pustelny, K. Barczak, K. Gut, and J. Wojcik, “Special optical fiber type D applied in optical sensor of electric currents”, Optica Applicata 34 (4), 531–539 (2004).
  • [16] T. F¨orster, “Zwischenmolekulare Energiewanderung und Fluoreszenz”, Ann. Physik 6 (2), 55–59 (1948).
  • [17] D.L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys. 21, 836–850 (1953).
  • [18] S. Hijanosa and M.A. Meneses-Nava, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb, Er:YAG”, J. Lum. 102–103, 694–698 (2003).
  • [19] G.A. Kumar and R.E. Riman, “Near-infrared optical characteristics of chalcogenide-bound Nd3+ molecules and clusters”, Chem. Mater. 19, 2937–2946 (2007).
  • [20] M.J.F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Chapter 2, pp. 17–25, Marcel Dekker, New York, 2001.
  • [21] G. Gao, G. Wang, C. Yu, J. Zhang, and L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ codoped oxyfluride tellurite glass”, J. Lum. 129, 1042–1047 (2009)
  • [22] S.D. Jackson, M.Pollnau, “Mid-infrared fiber lasers”, Appl. Phys. 89, 219 – 255 (2003)
  • [23] X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Hang, “Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses”, J. Phys. Chem. Solids 68 (8), 1566–1570 (2007).
  • [24] J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals”, Appl. Phys. B 61, 151–158 (1995).
  • [25] D.E. McCumber, “Einstein relations connecting broadband emission and absorption spectra”, Physics. Review 136, A954–A957 (1964).
  • [26] B.M. Walsh and N.P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm”, Appl. Phys. B 78, 325–333 (2004).
  • [27] J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm”, Opt. Mat. 24, 563–574 (2003).
  • [28] H. Fan, G. Gao, G.Wang, J. Hu, and L. Hu, “Tm3+ doped Bi2O3-GeO2-Na2O glasses for 1.8 μm fluorescence”, Opt. Mat. 32, 627–631 (2010).
  • [29] R.R. Xu, Y. Tian, M. Wang, L.L. Hu, and J.J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass”, Appl. Phys. B 102, 109–116 (2010).
  • [30] M. Reben, J. Wasylak, and J. Jaglarz, “Influence of active admixtures onto tellurite glass refractive index”, Bull. Pol. Ac.: Tech. 58 (4), 519–522 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.