Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work we consider a new class of algebra called k-cyclic SHn-algebra (A, T) where A is an SHn-algebra and T is a lattice endomorphism such that Tk(x) = x, for all x, k is a positive integer. The main goal of this paper is to show a Priestley duality theorem for k-cyclic SHn-algebra.
Słowa kluczowe
Rocznik
Tom
Strony
303--304
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Universidad de Costa Rica, 2060 San Jos´e, Costa Rica, arielfernandez@gmail.com
Bibliografia
- [1] Gr. C. Moisil, “Algebra schemelor cu elemente ventil”, Revista Universitatii C. I. Parhon si a Politehnicii Bucaresti Seria St. Nat. 4–5, 9–42 (1954).
- [2] Gr. C. Moisil, Essais sur les Logiques Non Chrysippiennes, Academiei Bucarest, Bucarest, 1972.
- [3] A. Monteiro, Algebras de Boole Involutivas, Universidad Nacional del Sur, Bah´ia Blanca, 1969.
- [4] A. Monteiro, Alg´ebres de Boole Cycliques, Revue Roumaine de Math. Pures et Appliqu´ess 23, 71–76 (1978).
- [5] M. Abad, “Estructuras c´iclica y mon´adica de un ´algebra de Łukasiewicz n-valente”, Notas de Lógica Matem´atica 36, CDROM (1988).
- [6] L. Iturrioz, “Alg´ebres de Heyting trivalentes involutives”, Notas de Lógica Matem´atica 31, CD-ROM (1974).
- [7] L. Iturrioz, “Łukasiewicz and symmetrical Heyting algebra”, Zeitschrift f ¨ur Mathematische Logik und Grundlagen der Mathematik 23, 131–136 (1977).
- [8] L. Iturrioz, Modal Operators on Symmetrical Heyting Algebra, Universal Algebra and Applications, Banach Center Publications 9, ed. T. Traczyk, pp. 289–303, PWN-Polish Scientific Publishers, Warsaw, 1982.
- [9] L. Iturrioz, “Symmetrical Heyting algebra with operators”, Zeitschrift f ¨ur Mathematische Logik und Grundlagen der Mathematik 29, 33–70 (1983).
- [10] L. Iturrioz and V. Sofronie-Stokkermans, “SHn-algebra (abbreviation of symmetrical Heyting algebra of order n)”, in: Atlas of Many-Valued Structures, COST Action 15, eds. L. Iturrioz, E. Orłowska, E. Turunen, pp. 1235–9599, Tampere Univ. of Technology, Tampere, 2000.
- [11] V. Sofroni-Stokkermans, “Priestley duality for SHn-algebras and applications to the study of Kripke-style models for SHnlogics”, Multiple Valued Logic, Int. J. 5 (4), 281–305 (1999).
- [12] A. Monteiro, “Sur les alg´ebres de Heyting sym´etriques”, Portugaliae Mathematica 39, 1–237 (1980).
- [13] L.L. Esakia, “Topological Kripke models”, Soviet Math. Dokl. 15, 147–151 (1974).
- [14] L.L. Esakia, “The problem of dualism in the intuitionistic logic and Browerian lattices”, V Int. Congress Logic, Methodology and Philosophy of Science 1, 7–8 (1975).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0018