PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanotechnology for biomedical applications - enhancement of photodynamic activity by nanomaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the last two decades nanotechnology has become one of the most dynamically evolving field of research. The unique properties of nanomaterials, not disclosing at microscale, are examined and exploited to extend our understanding of the interactions taking place at atomic or molecular level. Those findings affect research in many areas, like e.g. alternative energy sources, electronics, physics and medicine. In this paper, the possibility of using nanomaterials for the enhancement of photodynamic activity, is discussed. A brief review on drug-delivery facilitating nanomaterials, regarding their characteristic features, is presented. An exemplary application of silver-doped nanomaterials for enhancement of photodynamic properties of two photosensitizers: Photolon and Protoporphyrin IX, is described. Influence of silver-doped nanomaterials addition on the fluorescence intensity of photosensitizers immobilized in silica-titania (SiO2-TiO2) sol was examined via VIS spectroscopy. Influence of sonication on the fluorescence enhancement was also investigated. It was demonstrated that the fluorescence enhancement of photosensitizers depends on the concentration of both: photosensitizer and silver-doped nanoparticles.
Rocznik
Strony
253--261
Opis fizyczny
Bibliogr. 91 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] O.C. Farokhzad and R. Langer, “Nanomedicine: developing smarter therapeutic and diagnostic modalities”, Adv. Drug Del. Rev. 58, 1456-1459 (2006).
  • [2] Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles”, Int. J. Cancer 120, 2527–2537 (2007).
  • [3] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy”, Nat. Nanotechnol. 2, 751–760 (2007).
  • [4] D.A. Orroner, Y.E. Koo, T. Chen, R. Kopelman, O. Sagher, and M.A. Philbert, “Small solutions for big problems: the application of nanoparticle to brain tumor diagnosis and therapy”, Clinical Pharmacol. Ther. 85 (5), 531–534 (2009).
  • [5] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments”, Clinical Pharmacol. Ther 83 (5), 761–769 (2008).
  • [6] G. Szefner and D. Jasińska, “Modeling of strains and stress of material nanostructures”, Bull. Pol. Ac.: Tech. 57 (1), 41–46 (2009).
  • [7] M. Ferrari, “Cancer nanotechnology: opportunities and challenges”, Nat. Rev. Cancer 5, 161–171 (2005).
  • [8] M. Eaton, “Nanomedicine: industry-wise research”, Nature Materials 6, 251–253 (2007).
  • [9] Y. Lan, H. Wang, X. Chen, D. Wang, G. Chen, and Z. Ren, “Nanothermometer using single crystal silver nanospheres”, Adv. Mater. 21, 1–6 (2009).
  • [10] R. Bawa, “Nanoparticle-based therapeutics in humans: a survey”, Nanotech. Law Bus. 5 (2), 135–155 (2008).
  • [11] V. Wagner, A. Dullaart, A.-K. Bock, and A. Zweck, “The emerging nanomedicine landscape”, Nat. Biotech. 24, 1211–1217 (2006).
  • [12] M. Knez, “ALD – a versalite tool for nanostructuring”, Material Matters 3 (2), 28–30 (2008).
  • [13] G.P. Lopinski and D.D.M. Wayner, “Molecular monolayers on silicon surfaces”, Material Matters 3 (2), 38–41 (2008).
  • [14] B. Zdyrko, V. Klep, and I. Luzinov, “Universal platform for modification employing grafted polymer layers”, Material Matters 3 (2), 44–46 (2008).
  • [15] A. Jaworek, A.T. Sobczyk, A. Krupa, M. Lackowski, and T. Czech, “Electrostatic depositionof nanothin films on metal substrate”, Bull. Pol. Ac.: Tech. 57 (1), 63–70 (2009).
  • [16] M.A. Fierke, F. Li, and A. SteiFrom, “Form to function: molding porous materials in three dimensions by colloidal crystal templating”, Material Matters 3 (1), 10–12 (2008).
  • [17] G. Peng, U. Tisch, O. Adams,M. Hakim, N. Shehada, Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles”, Nat. Nanotechnol. 4, 669–673 (2009).
  • [18] P. Mazzone, “Sniffing out lung cancer”, Nat. Nanotechnol. 4, 621–622 (2009).
  • [19] A. Joshi, S. Punyani, S.S. Bale, H. Yang, T. Borca-Tasciuc, and R.S. Kane, “Nanotube-assisted protein deactivation”, Nat. Nanotechnol. 3, 41–45 (2008).
  • [20] W.J. Mulder, D.P. Cormode, S. Hak, M.E. Lobatto, S. Silvera, and Z.A. Fayad, “Multimodality nanotracers for cardiovascular applications”, Nat. Clin. Pract. Cardiovasc. Med. 5, 103–111 (2008).
  • [21] M.G. Bredell, E. Besic, C. Maake, and H. Walt, “The application and challenges of clinical PD-PDT in the head and neck region: a short review”, J. Photochem. Photobiol. B 101 (3), 185–190 (2010).
  • [22] Photodynamic Medicine, http://www.eppm-photomedicine.org/(2010).
  • [23] A. Sieroń and S. Kwiatek, “Twenty years of experience with PDD and PDT in Poland – review”, Photodiag. Photodyn. Ther. 6 (2), 73–78 (2009).
  • [24] R. Allison, H. Mota, V. Bagnato, and C. Sibata, “Bionanotechnology and photodynamic therapy – state of the art review”, Photodiag. Photodyn. Ther. 5, 19–28 (2008).
  • [25] H. Podbielska, A. Sieroń, and W. Stręk, Photodynamic Diagnostics and Therapy, Medical Publishing House, Urban & Partner, Wrocław, 2004, (in Polish).
  • [26] I.H. El-Sayed, X. Huang, and M.A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles”, Cancer Lett. 239, 129–135 (2006).
  • [27] M. MacCormack, Photodynamic Therapy, Adv. Dermatol. 22, 219–258 (2006).
  • [28] P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, and T. Hasan, “Development and applications of photo-triggered theranostic agents”, Adv. Drug Deliv. Rev. 2 (11), 1094–1124 (2010).
  • [29] I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis”, Adv. Drug Del. Rev. 54, 631–651 (2002).
  • [30] J. Moan and Q. Peng, An Outline of the History of PDT, in: Photodynamic Therapy, pp. 1–18, ed. T. Patrice, The Royal Society of Chemistry, London, 2003.
  • [31] F. Marcucci and F. Lefoulon, “Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress”, Drug Discov. Today 9 (5), 219–228 (2004).
  • [32] O.M. Koo, I. Rubinstein, and H. Onyuksel, “Role of nanotechnology in targeted drug delivery and imaging: a concise review”, Nanomedicine 1, 193–212 (2005).
  • [33] J.F. Lovell, T.W. Liu, J. Chen, and G. Zheng, “Activatable photosensitizers for imaging and therapy”, Chem. Rev. 110 (5), 2839–2857 (2010).
  • [34] I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan, T.J. Dougherty, and P.N. Prasad, “Ceramicbased nanoparticles entrapping water insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy”, J. Am. Chem. Soc. 125, 7860–7865 (2003).
  • [35] S. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging”, Drug Discov. Today 8, 1112–1120 (2003).
  • [36] D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin, and M. Barberi-Heyob, “Nanoparticles as vehicles for delivery of photodynamic therapy agents”, Trends Biotechnol. 26 (11), 612–621 (2008).
  • [37] Y. Konan, M. Berton, R. Gurny, and E. All´emann, “Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl) porphyrin by incorporation into sub-200 nm nanoparticles”, Eur. J. Pharm. Sci. 18, 241–249 (2003).
  • [38] B. Pegaz, E. Debefve, F. Borle, J. Ballini, H. van den Bergh, and Y. Kouakou-Konan, “Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study”, J. Photochem. Photobiol. B 80, 19–27 (2005).
  • [39] Y. Konan, R. Cerny, J. Favet, M. Berton, R. Gurny and E. All´emann, “Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy”, Eur. J. Pharm. Biopharm. 55, 115–124 (2003).
  • [40] A. Vargas, B. Pegaz, E. Debefve, Y. Konan-Kouakoub, N. Lange, J.P. Ballini, H. van den Bergh, R. Gurny, and F. Delie, “Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos”, Int. J. Pharm. 286, 131–145 (2004).
  • [41] K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, and W.E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices”, J. Control. Release. 70, 1–20 (2001).
  • [42] E. Ricci-Junior and J. Marchetti, “Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use”, Int. J. Pharm. 310, 187–195 (2006).
  • [43] W. Tang, H. Xu, E.J. Park, M.A. Philbert, and R. Kopelman, “Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness”, Biochem. Biophys. Res. Commun. 369, 579–583 (2008).
  • [44] M.L. Adams, A. Lavasanifar, and G.S. Kwon, “Amphiphilic blockcopolymers for drug delivery”, J. Pharm. Sci. 92, 1343–1355 (2003).
  • [45] A. Lavasanifar, J. Samuel, and G. Kwon, “Micelles of poly(ethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): synthetic analogues of lipoproteins for drug delivery”, J. Biomed. Mater. Res. 52 (4), 831–835 (2000).
  • [46] K. Yasugi, Y. Nagasaki, M. Kato, and K. Kataoka, “Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier”, J. Control. Release 62, 89–100 (1999).
  • [47] C.F. Rijcken, J.W. Hofman, F. van Zeeland, W.E. Hennink and C.F. van Nostrum, “Photosensitiser-loaded biodegradable polymeric micelles: Preparation, characterisation and in vitro PDT efficacy”, J. Control. Release 124, 144–153 (2007).
  • [48] C.F. van Nostrum, “Polymeric micelles to deliver photosensitizers for photodynamic therapy”, Adv. Drug Del. Rev. 56, 9–16 (2004).
  • [49] J.E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Samurai, and T. Okano, “Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(Nisopropylacrylamide) and poly(butylmethacrylate)”, J. Control. Release 62, 115–127 (1999).
  • [50] D. Neradovic, C.F. van Rostrum, and W.E. Hennink, “Thermoresponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers”, Macromolecules 34, 7589–7591 (2001).
  • [51] V.P. Torchilin, “PEG-based micelles as carriers of contrast agents for different imaging modalities”, Adv. Drug Deliv. Rev. 54, 235–252 (2002).
  • [52] Y. Li, K. Xiao, J. Luo, J. Lee, S. Pan, and K.S. Lam, “A novel size-tunable nanocarrier system for targeted anticancer drug delivery”, J. Control. Release 144(3), 314–323 (2010).
  • [53] V.P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers”, Nat. Rev. Drug Discov. 4, 145–160 (2005).
  • [54] G. Thurston, J.W. McLean, M. Rizen, P. Baluk, A. Haskell, T.J. Murphy, D. Hanahan, and D.M. McDonald, ”Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice”, J. Clin. Invest. 101, 1401–1413 (1998).
  • [55] S. Krasnici, A. Werner, M.E. Eichhorn, M. Schmitt-Sody, S.A. Pahernik, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian., “Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels”, Int. J. Cancer 105, 561–567 (2003).
  • [56] Y.N. Konan, R. Gruny, and E. All´emann, “State of art in the delivery of the photosensitizers for photodynamic tharapy”, Photochem. Photobiol. B 66, 89–106 (2002).
  • [57] S. Svenson, and D. Tomalia, “Dendrimers in biomedical applications – reflections on the field”, Adv. Drug Del. Rev. 57, 2106–2129 (2005).
  • [58] A. Caminade, R. Laurent, and J. Majoral, “Characterization of dendrimers”, Adv. Drug Del. Rev. 57, 2130–2146 (2005).
  • [59] K. Kitchens, M.A. El-Sayed, and H. Ghandehar, “Transepithelial and endothelial transport of poly (amidoamine) dendrimers”, Adv. Drug Del. Rev. 57, 2163–2176, (2005).
  • [60] R. Duncan and L. Izzo, “Dendrimer biocompatibility and toxicity”, Adv. Drug Del. Rev. 57, 2215–2237 (2005).
  • [61] T. Okuda, S. Kawakami, T. Maeie, T. Niidome, F.Yamashita, and M. Hashida, “Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration”, J. Control. Release 114, 69–77 (2006).
  • [62] I.B. Rietveld, W.G. Bouwman, M.W.P.L. Basra, and R.K. Heenan, “Location of the outer shell and influence of pH on carboxylic acid-functionalized poly(propylene imine) dendrimers”, Macromolecules 34, 8380–8383 (2001).
  • [63] M. El-Sayed, M.F. Kiani, M.D. Naimark, A.H. Hilal, and H. Ghandehari, “Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium”, Pharm. Res. 18, 23–28 (2001).
  • [64] R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N.B. Mc-Keown, and A. D’Emanuele, “The influence of surface modification on the cytotoxicity of PAMAM dendrimers”, Int. J. Pharm. 252, 263–266 (2003).
  • [65] M. El-Sayed, M. Ginski, C. Rhodes. and H. Ghandehari, “Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers”, J. Control. Release 81, 355–365 (2002).
  • [66] N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener, E.W. Meijer, W. Paulus and R. Duncan, “Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled poly(amidoamine) dendrimers in vivo”, J. Control. Release 65, 133–148 (2000).
  • [67] M.E. Wieder, D. Hone, M.J. Cook, M.M. Handsley, J. Gavrilovie, and D.A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse”’, Photochem. Photobiol. Sci. 5 (8), 727–734 (2006).
  • [68] L. Czernielewski, G.B. Ekonjo, E. Teterycz, M. Gryboś ,and H. Podbielska, “Developments in photodynamic diagnosis and therapy in gynecology – a review”, in: Aspects of Photodynamic Medicine II, eds. H. Podbielska, A. Sieroń, W. Stręk, pp. 177–236, Publishing House Indygo, Wrocław, 2008.
  • [69] K. Wysocka, U. Bindig, J. Bauer, W. Stręk, K. Kowal, and H. Podbielska, “Silver based nanomaterials – fluorescence enhancement in silver doped silica based nanobiomaterials”, Engineering of Biomaterials 81–84, 124–125 (2008).
  • [70] H.A. Isakau, M.V. Parkhats, V.N. Knyukshto, B.M. Dzhagarov, E.P. Petrov, and P.T. Petrov, “Toward understanding the high PDT efficacy of chlorine e6-polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizerpolymer interaction in vitro”, J. Photochem. Photobiol. B 92, 165–174 (2008).
  • [71] W.W.L. Chin, P.W.S. Heng, P.S.P. Thong, R. Bhuvaneswari, W. Hirt, S. Kuenzel, K.C. Soo, and M. Olivo, “Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer”, Eur. J. Pharm. Biopharm. 69, 1083–1093 (2008).
  • [72] U. Bindig, A. Ulatowska-Jarża, M. Kopaczyńska, G. M¨uller, and H. Podbielska, “Investigations on photolon- and porphyrindoped sol-gel fiberoptic coatings for laser-assisted applications in medicine”, Laser Phys. 18, 1–10 (2008).
  • [73] A. Ulatowska-Jarża, I. Hołowacz, K. Wysocka, and H. Podbielska, “Silica-based versus silica-titania sol-gel materials – comparison of the physical properties: surface tension, gelation time, refractive index and optical transmittance”, Opt. Appl. 39, 211–220 (2009).
  • [74] H. Podbielska, A. Ulatowska-Jarża, J. Bauer, A. Wieliczko, J. Razik, and W. Stręk, “The comparison of photodynamic activity of Photolon and Protoporphyrine on pathogenic bacteria in vitro”, Pol. J. Environ. Stud. 15, 147–151, (2006).
  • [75] Y. Wangi, J. Zhou, R. Zong, S. Shi, T. Wang, and B. Li, “Enhancement effect of terbium complex luminescence by binding to silver nanoparticles in the solution”, Optoelectron. Lett. 2, 316–319 (2006).
  • [76] H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of Europium complex in the solution phase”, J. Phys. Chem. B 107 (35), 9161–9164 (2003).
  • [77] S. Areva, V. ¨A¨aritalo, S. Tuusa, M. Jokinen, M. Lind´en, and T. Peltola, “Sol-gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response”, J. Mater. Sci. Mater. Med. 18 (8), 1633–1642 (2007).
  • [78] A. Ochsenbein, F. Chai, S. Winter, M. Traisnel, J. Breme, and H.F. Hildebrand, “Osteoblast responses to different oxide coatings produced by the sol–gel process on titanium substrates”, Acta Biomater. 4 (5), 1506–1517 (2008).
  • [79] D. B¨ocking, J. Fiedler, R.E. Brenner, and R.E. H¨using, “Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films”, J. Mater. Sci. 44 (24), 6786–6794 (2009).
  • [80] V. Muhonen, S. Kujala, A. Vuotikka, V. A¨aritalo, T. Peltola, S. Areva, T. N¨arhi, and J. Tuukkanen, “Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails”, Acta Biomater. 5(2), 785–793 (2009).
  • [81] V. ¨A¨aritalo, V. Meretoja, T. Tirri, S. Areva, T. J¨ams¨a, J. Tuukkanen, A. Rosling, and T. N¨arhi, ”Development of a low temperature sol-gel-derived titania-silica implant coating”, Materials Sciences and Applications 1, 118–126 (2010).
  • [82] M.S.M. Peterson, J. Bouwman, A. Chen, and M. Deutsch, “Inorganic metallodielectric materials fabricated using two singlestep methods based on the Tollen’s process”, J. Colloid Interface Sci. 306, 41–49 (2007).
  • [83] K. Wysocka, A. Leszkiewicz, W. Stręk, W. Goroszkiewicz, and H. Podbielska, “Silicon nanomaterials doped with silver and their possible applications in biomedicine”, Acta Bio-Opt. et Informat. Med. 13 (3), 180–183 (2007), (in Polish).
  • [84] P. Cordiali Fei, A. Macri, E. Trento, G. D’Agosto, D. Griso, F. Biolcati, and F. Ameglio, “Flow cytometric analysis of fluorocytes in patients with erythropoietic porphyria”, Eur. J. Histochem. 41 (2), 9–10 (1997).
  • [85] C.-W. Lam, K.-C. Lau, C.M. Mak, M.-W. Tsang, and Y.- W. Chan, “Circulating fluorocytes at the first attack of acute intermittent porphyria: a missing link in the pathogenesis”, Clin. Chim. Acta 412 (1–2), 208–212 (2011).
  • [86] A.O. Ribeiro, C.R. Neri, Y. Iamamoto, and O.A. Serra, “Spectroscopic studies on the inclusion complexes of tetrakis(2- hydroxy-5-nitrophenyl)porphyrin with a-cyclodextrin in solution and in sol-gel matrix”, Mater. Sci. 20 (1), 21–27 (2002).
  • [87] M.Wieder, D. Hone, M.J. Cook, M.M. Handsley, J. Gavrilovie, and D. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a Trojan horse”, Photochem. Photobiol. Sci. 5, 727–734 (2006).
  • [88] F. Yan and R. Kopelman, “The embedding of metatetra( hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties”, Photochem. Photobiol. 78, 587–591 (2003).
  • [89] Z. Lu, F. Ye, and A. Vaidya, “Polymer platforms for drug delivery and biomedical imaging”, J. Control. Release 122, 269–277 (2007).
  • [90] B. Pegaz, E. Debefve, J.-P. Ballini, Y. Konan-Kouakou, and H. van den Bergh, “Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(ptetracarboxyphenyl) porphyrin”, J. Photochem. Photobiol. B 85, 216–222 (2006).
  • [91] Carl Schlyter, Report on Regulatory Aspects of Nanomaterials (2008/2208(INI)), Committee on the Environment, Public Health and Food Safety, http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2009-0255+0+DOC+XML+V0//EN (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0070-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.