PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wavefunction-Engineering of Intersubband THz-Laser Nanoheterointerfaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel THz-luminescence laser nanoheterointerfacial scheme of the intersubband, longer-wavelength limit, mid-infrared functionality type has been designed on the basis of optically-pumped dual-resonant tunnelling of conductivity electrons within an appropriately energetically-determined configuration of five subbands hosted by two communicating asymmetric, approximately rectangular quantum wells (QWs). The employed upper laser-action level is the second excited subband of the nanostructure back, wider QW and is provided with electrons via resonant tunnelling from the first excited subband of the nanostructure front QW populated through remotely ignited optical pumping out of the local fundamental subband. On the other hand, the first excited back-QW subband functions as the lower laser action level, directly delivering the received electrons to the local fundamental subband via a fast vertical longitudinal optical phonon scattering. From there, they are recycled back to the nanostructure front QW fundamental subband by virtue of a second, reverse sense resonant-tunnelling-mediated normal charge transport mechanism. A nanophotonics application of the scheme predicts laser operability in the 15-THz range.
Rocznik
Strony
85--90
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Harris J J, Murray R and Foxon C T 1993 Semicond. Sci. Technol. 8 31
  • [2] Li Sheiigs S, Chuang M Y and Yu L S 1993 Semicond. Sn. Technol. 8 406
  • [3] Logansen L V, Malov V V and Xu J M 1993 Semicond. Sci. Technol. 8 568
  • [4] Juang C 1991 Phys. Rev. B 44 10706
  • [5] Asbel M Ya 1992 Phys. Rev. Lett. 68 98
  • [6] Papadopoulos G J 1997 J. Phys. A. 30 5497
  • [7] Capasso F and Cho A Y 1994 Sur. Sci. 299/300 878
  • [8] Grondin R O, Poród W, Ho J, Fcrry D K and lafrate G J 1985 Superlattices and Microstructures l 183
  • [9] Churchill J N and Holmstrom F E 1981 Phys. Lett. A 85 453
  • [10] Sollner T C L G, Goodhue W D, Tannenwald P E, Parker C D and Peck D D 1983 Appl. Phys. Lett. 43 588
  • [11] Yokoyama N, Imamura K, Oshima T, Nishi H, Muto S, Kondo K and Hiyamizu S 1984 J. Appl. Phys. 23 L311
  • [12] Faist J, Capasso F. Sivco D, Sirtori D, Hutchinson A L, Chu S N G and Cho A Y 1994 Science 264 553
  • [13] Faist J, Capasso F, Sirtori C, Sivco D L, Hutchinson A L and Cho A Y 1996 Electron. Lett. 32 560
  • [14] Singh J 1995 Semiconductor Optoelectronics Chap. 10, McGraw-Hill, New York
  • [15] Julien G H, Gauthier-Lafaye O, Boucaud P, Sauyage S. Lourtioz J-M, Thierry-Mieg V and Phanel R 1998 Intcrsubband Transitions in Quantum Wells: Physics and Devices Chap. l, Kluwer Academic Publishers, Boston
  • [16] Anagnostakis E A 1994 Phys. Stat. Soi. B 181 K15
  • [17] Bastard G 1987 Wave Mechanics Applied to Semiconductor Heterostructures Chap. IV, VI, Les Edition de Physique, Les Ulis Cedex, France
  • [18] Chiou W-H, Pan H-J, Liu R-Ch, Chen Ch-Y, Wang Ch-K, Chuang H-M and Liu W-Ch 2002 Semicond. Sci. Technol. 17 87
  • [19] Pessa M, Guina M, Dumitrescu M. Hirvonen I, Saarinen M, Toikkanen L and Xiang N 2002 Semicond. Sci. Technol. 17 Rl
  • [20] Kulakovskii V D, Tartakovskii A I, Krizhanovskii D N, Gippius N A. Skolriick M S and Roberts J S 2001 Nanotechnology 12 475
  • [21] Anagnostakis E A 2008 J. Non-Cryst. Soi. 354 4233
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0067-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.