Identyfikatory
Warianty tytułu
Miscanthus – trawa niezwykła: charakterystyka biochemiczno--fizjologiczna: przegląd literaturowy
Języki publikacji
Abstrakty
Miscanthus × giganteus (Giant Miscanthus) is one of the most promising plants cultivated for biomass production. In spite of its origin from south-east Asia and being warm adapted plant it grows well and produces high biomass in temperate latitudes. Miscanthus × giganteus is a C4 plant and hence this study presents a brief description of C4 photosynthesis and the enzymes involved in this process. On the basis of data from current literature, the biochemical bases of relatively high tolerance of miscanthus to cold temperatures (0–15 oC) were evaluated. Moreover, it was reviewed numerous ecophysiological features of Miscanthus × giganteus were reviewed (high productivity, low fertiliser and pesticides requirements, possibility to use in phytoremediation) which showed that it is a proecological and environmentally friendly crop. This causes that Miscanthus × giganteus might be recognize as a leading crop in non-food cultivations.
Miscanthus × giganteus (Miskant olbrzymi) jest jedną z bardziej obiecujących tzw. Roślin alternatywnych uprawianych z przeznaczeniem na cele energetyczne. Pomimo że pochodzi z południowo- Miscanthus -wschodniej Azji i jest rośliną ciepłolubną, to bardzo dobrze rośnie i charakteryzuje się wysoką produktywności ą w strefie umiarkowanych szerokości geograficznych. Miscanthus × giganteus jest rośliną typu C4, dlatego w pracy przedstawiono krótki opis procesu fotosyntetycznego wiązania CO2 w tzw. szlaku C4 oraz uczestniczących w nim enzymów. Korzystając z najnowszych danych literaturowych, przeanalizowano podstawy biochemiczne stosunkowo dużej odporności tej rośliny na niskie temperatury (0-15 oC). Opisano również szereg ekofizjologicznych właściwości Miscanthus × giganteus (wysoka produktywność, niewielkie wymagania nawozowe, brak konieczności stosowania pestycydów, możliwość wykorzystania w procesach fitoremediacji), które sprawiają, że jest on określany jako roślina ekologiczna i szczególnie przyjazna środowisku. Opisane cechy rośliny sprawiają, że można ją uznać za lidera wśród roślin uprawianych na cele nieżywnościowe.
Czasopismo
Rocznik
Tom
Strony
1615--1624
Opis fizyczny
Bibliogr. 48 poz., tab., rys.
Twórcy
autor
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50–357 Wrocław, Poland, elzbieta.sacala@up.wroc.pl
Bibliografia
- [1] Chou Ch.-H.: Miscanthus plants used as an alternative biofuel material: The basic studies on ecology and molecular evolution. Renewable Energy 2009, 34, 1908–1912.
- [2] Lewandowski I. and Kicherer A.: Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur. J. Agron. 1997, 6, 163–177.
- [3] Jeżowski S.: Miscanthus sinensis (Thunb.) Andersson as a source of renewable and ecological raw materials for Poland. Zesz. Probl. Post. Nauk Roln. 1999, 468, 159–166 [in Polish with English summary].
- [4] Hodkinson T.R., Renvoize S.A. and Chase M.W.: Systematics in Miscanthus. Aspects Appl. Biol. 1997, 49, 189–198.
- [5] Farrar K., Donnison I. and Cliffton-Brown J.: Manipulation of plant architecture for increased biomass in Miscanthus. Comp. Biochem. Physiol./Abstract, Part A 2008, 150, S181.
- [6] Deuter M. and Jeżowski S.: Szanse i problemy hodowli traw z rodzaju Miscanthus jako roślin alternatywnych. Hodow. Rośl. Nas. 1998, 2, 45–48 [in Polish with English summary].
- [7] Furbank R.T. and Taylor W.C.: Regulation of photosynthesis in C3 and C4 plants: A molecular approach. Plant Cell 1995, 7, 797–807.
- [8] Chollet R., Vidal J. and Oleary M.H.: Phosphśnolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 273–298.
- [9] Krall J.P., Edwards G.E. and Andreo C.S.: Protection of pyruvate, Pi dikinase from maize against cold lability by compatible solutes. Plant Physiol. 1989, 89, 280–285.
- [10] Salahas C., Cormas E. and Zervoudakis G.: Cold inactivation of phosphśnolpyruvate carboxylase and pyruvate orthophosphate dikinase from the C4 perennial plant Atriplex halimus. Russ. J. Plant Physiol. 2002, 49, 211–215.
- [11] Wang D., Portis Jr. A.R., Moose S.P. and Long S.P.: Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol. 2008b, 148, 557–567.
- [12] Lewandowski I. and Schmidt U.: Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346.
- [13] Beale C.V., Bint D.A. and Long S.P.: Leaf photosynthesis in the C4-grass Miscanthus× giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 1996, 47, 267–273.
- [14] Beale C.V. and Long S.P.: Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ. 1995, 18, 641–650.
- [15] Naidu S.L. and Long S.P.: Potential mechanism of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis. Planta. 2004, 220, 145–155.
- [16] Farage P.K., Blowers D.A., Long S.P. and Baker N.R.: Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant Cell Environ. 2006, 29, 720–728.
- [17] Kubien D.S., von Caemmerer S., Furbank R.T. and Sage R.: C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of rubisco. Plant Physiol. 2003, 132, 1577–1585.
- [18] Wang D., Naidu S.L., Portis Jr. A.R., Moose S.P. and Long S.P.: Can the cold tolerance of C4 photosynthesis in Miscanthus × giganteus relative to Zea mays be explained by differences in activities and termal properties of Rubisco? J. Exp. Bot. 2008, 59, 1779–1787.
- [19] Naidu S.L., Moose S.P., Al-Shoaibi A.K., Raines A.K. and Long S.P.: Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 2003, 132, 1688–1697.
- [20] Beck E.H., Fettig S., Knake C., Hartig K. and Bhattarai T.: Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 2007, 32, 501–510.
- [21] Allen D.J. and Ort D.R.: Impacts of chilling temperature on photosynthesis in warm-climate plants. Trends Plant Sci. 2001, 6, 36–42.
- [22] Clifton-Brown J.C. and Lewandowski I.: Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur. J. Agron. 2002, 16, 97–110.
- [23] Farrell A.D., Clifton-Brown J.C., Lewandowski I. and Jones M.B.: Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann. Appl. Biol. 2006, 149, 337–345.
- [24] Płażek A., Dubert F. and Marzec K.: Cell membrane permeability and antioxidant activities in the rootstocks of Miscanthus × giganteus as an effect of cold and frost treatment. J. Appl. Bot. Food Quality 2009, 82, 158–162.
- [25] Ivory D.A. and Whiteman P.C.: Effects of environment and plant factors on foliar freezing resistance in tropical grasses. II. Comparison of frost resistance between cultivars of Cenchrus ciliaris, Chloris gayana and Setaria anceps. Austral. J. Agricul. Res. 1978, 29, 261–266.
- [26] Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O. and Huisman W.: Miscanthus: European experience with a novel energy crop. Biomass Biśnergy 2000, 19, 209–227.
- [27] Zub H.W. and Brancourt-Hulmel M.: Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sustain. Devel. 2010, 30, 201–214.
- [28] Dohleman F.G. and Long S.P.: More productive than maize in the midwest: How dśs Miscanthus do it? Plant Physiol. 2009, 150, 2104–2115.
- [29] Dohleman F.G., Heaton E.A., Leakey A.D.B. and Long S.P.: Dśs greater leaf-level photosynthesis explain the longer solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ. 2009, 32, 1525–1537.
- [30] Himken M., Lammel J., Neukirchen D., Czypionka-Krause U. and Olfs H.-W.: Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 1997, 189, 117–126.
- [31] Donalatas N.G., Archontoulis S.V. and Mitsios I.: Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Biśnergy. 2007, 31, 145–152.
- [32] Christian D.G., Riche A.B. and Yates N.E.: Growth, yield and mineral content of Miscanthus × giganteus grown as biofuel for 14 successive harvests. Ind. Crop. Prod. 2008, 28, 320–327.
- [33] Amougou N., Bertrand I., Machet J.-M. and Recous S.: Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus × giganteus, as affected by harvest date and N fertilization. Plant Soil 2011, 338, 83–97.
- [34] Kotecki A.: Cultivation of Miscanthus × giganteus. Wyd. Uniwersytetu Przyrodniczego we Wrocławiu, 2010 [in Polish with English abstracts].
- [35] Kalembasa D., Malinowska E., Jaremko D. and Jeżowski S.: The influence of NPK fertilization on yield structure of the Miscanthus ssp. grasses. Biul. IHAR 2004, 234, 205–211 [in Polish with English summary].
- [36] Cosentino S.L., Patanč C., Sanzone E., Copani V. and Foti S.: Effects of soil content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind. Crop. Prod. 2007, 25, 75–88.
- [37] Ercoli L., Mariotti M., Masoni A. and Bonari E.: Effect of irrigations and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Res. 1999, 63, 3–11.
- [38] Christian D.G., Poulton P.R., Riche A.B., Yates N.E. and Todd A.D.: The recovery over several seasons of 15N-labelled fertilizer applied to Miscanthus × giganteus ranging from 1 to 3 years old. Biomass Bioenergy 2006, 30, 125–133.
- [39] Kalembasa D., Jeżowski S., Pude R. and Malinowska E.: The content of carbon, hydrogen and nitrogen in different development stage of some clones of Miscanthus. Polish J. Soil Sci. 2005, 38, 169–177.
- [40] Lewandowski I. and Heinz A.: Delayed harvest of miscanthus – influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 2003, 19, 45–63.
- [41] Sŕnchez-Moreiras A.M., Weiss O.A. and Reigosa-Roger M.J.: Allelopathic evidence in the Poaceae. Bot. Rev. 2004, 69, 300–319.
- [42] Chou Ch.-H. and Lee Y.-F.: Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J. Chem. Ecology 1991, 17, 2267–2281.
- [43] Watanabe T., Jansen S. and Osaki M.: Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils. Plant Cell Environ. 2006, 29, 2124–2132.
- [44] Ezaki B., Nagao E., Yamamoto Y., Nakashima S. and Enomoto T.: Wild plants, Andropogon viriginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminium, heavy metals and oxidative stresses. Plant Cell Rep. 2008, 27, 951–961.
- [45] Pilon-Smits E.A.H., Quinn C.F., Tapken W., Malagoli M. and Schiavon M..: Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 2009, 12, 267–274.
- [46] Arduini I., Ercoli L., Mariotti M. and Masoni A.: Response of miscanthus to toxic cadmium applications during period of maximum growth. Environ. Exp. Bot. 2006, 55, 29–40.
- [47] Rowe R.L., Street N.R. and Taylor G.: Identifying potential environmental impacts of large-scale deployment of dedicated biśnergy crops in UK. Renew. Sustain. Energ. Rev. 2009, 13, 271–290.
- [48] Smeets E.M.W., Lewandowski I.M. and Faaij A.P.C.: The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew. Sustain. Energ. Rev. 2009, 13, 1230–1245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0065-0025