XXI Seminarium

ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE' 2011

Oddział Gdański PTETiS

Referat nr 3

WYBRANE PROBLEMY OGRANICZANIA STRAT MOCY I ENERGII W SIECIACH DYSTRYBUCYJNYCH

Janusz BROŻEK¹, Wojciech BĄCHOREK²

- 1. AGH Akademia Górniczo Hutnicza, al. A. Mickiewicza 30, 30-059 Kraków tel: 12 617 3772 fax: 12 634 57 21 e-mail: jbroz@agh.edu.pl
- 2. AGH Akademia Górniczo Hutnicza, al. A. Mickiewicza 30, 30-059 Kraków tel: 12 617 2599 fax: 12 634 57 21 e-mail: wojbach@agh.edu.pl

Streszczenie: Stacje transformatorowe średniego napięcia na niskie napięcie (SN/nn) spełniają podobną rolę w sieciach niskiego napięcia jak główne punkty zasilania (GPZ) w sieci średniego napięcia. Budowa nowej stacji transformatorowej SN/nn zmienia warunki pracy elektroenergetycznej sieci rozdzielczej na danym terenie poprzez:

- zmniejszenie długości ciągów sieci dystrybucyjnej nn,
- zmiany w rozpływie prądów,
- zmniejszenie spadków napięcia,
- zmniejszenie strat mocy i energii w istniejącym układzie,
- zwiększenie pewności zasilania.

W referacie przedstawiono wyniki obliczeń strat mocy i energii dla różnych stanów pracy sieci dystrybucyjnej niskiego napięcia. Do analizy strat mocy i energii w sieci rozdzielczej nn zastosowano model liniowy sieci. Praca stanowi kontynuację tematu zawartego w pracy [1].

Slowa kluczowe: elektroenergetyczna sieć dystrybucyjna, straty mocy i energii.

1. STRATY MOCY I ENERGII

Dodatkowe stacje transformatorowe SN/nn "skracają" drogi zasilania do odbiorców zasilanych z sieci niskiego napięcia nn, co wpływa na poziom strat mocy i energii w tej sieci.

Do analizy strat mocy i energii w sieci niskiego napięcia zastosowano model liniowy sieci (równomiernie obciążenie wzdłuż torów sieci) [1], [2].

Poszczególne parametry charakteryzujące analizowaną sieć testową obliczano z następujących zależności:

 równomierne rozłożone obciążenie jednostkowe p_n (liniowa gęstość obciążenia),

$$p_n = \frac{P_c}{l_c} = \frac{P_z}{l_{sr}} \tag{1}$$

Straty mocy ΔP w linii,

$$\Delta P = \frac{p_n^2 l_c^3 \times 10^3}{3\gamma s U^2 \cos^2 \varphi} \delta_p \tag{2}$$

minimalny przekrój s przewodu:

$$s = \frac{p_n l_c^2 \times 10^5}{2 \gamma \Lambda U U^2} \delta_u \tag{3}$$

 \triangleright obciążenie obwodu S_{max} ,

$$S_{\max} = \frac{P_c}{\cos\varphi} k_j = \frac{n P_z}{\cos\varphi} k_j$$
(4)

> straty energii w przewodach i w transformatorach ΔE ,

$$\Delta E = \left(l_n \ \Delta P + P_k \left(\frac{S_{\max}}{S_n} \right)^2 \right) \tau + P_0 \ T_p \tag{5}$$

 \blacktriangleright jednostkowe straty energii ΔE_{jed} ,

$$\Delta E_{jed} = \frac{\Delta E}{n} \tag{6}$$

czas trwania strat maksymalnych τ,

$$\tau = \frac{2}{3}T_s \tag{7}$$

gdzie: P_c – całkowita moc obwodu [kW]; P_z – moc odbioru w szczycie obciążenia linii (taka sama dla wszystkich odbiorów) [kW]; k_j – współczynnik jednoczesności szczytów obciążenia (zależny od liczby zasilanych odbiorów); n – liczba odbiorów [szt.]; l_c – długość obwodu [m]; l_{sr} – średnia odległość między odbiorami [m]; γ – przewodność właściwa [m/(Ω mm²)], U – napięcie międzyfazowe [V]; ΔU – dopuszczalny spadek napięcia [%]; cos φ – współczynnik mocy odbioru (taki sam dla wszystkich odbiorów); T_s – czas użytkowania mocy szczytowej [h/a]; T_p – czas pracy urządzenia pod napięciem [h/a]; l_n – liczba linii nn zasilanych z transformatora [szt.]; S_{max} – maksymalne obciążenie obwodu [kVA]; S_n – moc znamionowa transformatora [kVA]; P_k – znamionowe straty w uzwojeniach transformatora [kW]; P_0 – straty jałowe transformatora [kW], δ_p – współczynnik poprawkowy do obliczania strat mocy (zależny od liczby zasilanych odbiorów), δ_u – współczynnik poprawkowy do obliczania minimalnego przekroju (zależny od liczby zasilanych odbiorów).

Przyjęcie modelu liniowego sieci nn umożliwia obliczenie start mocy i energii przy znajomości tylko prądu wpływającego do sieci (bez konieczności znajomości obciążenia szczytowego poszczególnych odbiorów).

Rys. 1. Zależność współczynnika jednoczesności obciążenia k_j od liczby odbiorników, krzywa 1 wg [3] krzywa 2 wg [4]

Niejednoczesność występowania obciążenia szczytowego odbiorów uwzględnia się stosując do obliczeń współczynnik jednoczesności obciążenia k_j . Od wartości współczynników k_j znacząco zależą wyliczane wartości strat mocy i energii. Na rysunku 1 przedstawiono cytowane w literaturze [3], [4] wartości współczynnika k_j .

2. WPŁYW LICZBY ZASILANYCH ODBIORCÓW NA WIELKOŚĆ STRAT MOCY I ENERGII

Dla przedstawionego modelu obliczono jednostkowe straty energii δE (straty energii w liniach i transformatorze przypadające na jednego odbiorce) w zależności od liczby zasilanych odbiorów, dla następujących danych: $\tau = 2 \ 100 \ h$, $l_n = 2 \times l_{sr} = 40$ [m], liczba odbiorów $n \in (2 \div 58), k_i, \delta_p, \delta_u$ współczynniki dobierane wg [3], [4], [5], $T_p = 8760$ [h/a]. Przekroje dobierano według zależności (3) ze zbioru przekrojów znamionowych $s \in \{16, 25, 35, 70, 95, 120\}$ mm² [1]. Obciążenie transformatorów SN/nn obliczano z zależności (4), moc znamionową dobierano ze zbioru transformatorów o mocach znamionowych $S_n \in \{50, 100,$ 160} [1]. Obliczenia wykonano dla mocy jednostkowych odbiorów $P_z \in \{4, 6, 8, 10, 12\}$ kW/odb. Wyniki obliczeń przedstawiono na rysunku 2. Na rysunku podano dodatkowo zależność jednostkowych strat energii stanu jałowego transformatora δE (na jednego odbiorce).

Przebieg zależności strat jednostkowych w sieci zasilającej (transformator + linie) od liczby przyłączonych odbiorów jest uwarunkowany stratami energii stanu jałowego w transformatorze ΔE_j . Dla małej liczby odbiorów straty te są dominujące. W miarę zwiększania liczby odbiorców wzrastają straty obciążeniowe w transformatorze i liniach. Powyżej pewnej liczby odbiorców (dla analizowanego przykładu 18÷22 odbiorców) funkcja strat jednostkowych ma przebieg prawie płaski (straty wolno maleją ze wzrostem ilości odbiorów), co związanie jest z dominacją strat obciążeniowych w całkowitych stratach energii. Charakterystyczne "schodki" na wykresach (rys. 2) są spowodowane zmianą przekroju przewodów linii oraz zmianą mocy transformatora.

Rys. 2. Jednostkowe straty energii w sieci zasilającej (transformator SN/nn + linie nn) w funkcji ilości odbiorców, dla różnych mocy jednostkowych odbiorców P_z (średnia odległość między odbiorcami; $l_{sr} = 40$ m; liczba linii wychodzących z transformatora $l_n = 2$; δE jednostkowe straty energii stanu pracy jałowej transformatora)

Otrzymane wyniki wskazują, że dla ograniczenia jednostkowych strat energii w sieci o strukturze liniowej należy unikać zasilania zbyt małej liczby odbiorców. W analizowanym przykładzie liczba przyłączonych odbiorców powinna być większa od 18÷22.

3. WPŁYW DODATKOWEJ STACJI TARNSFORMTOROWEJ NA WIELKOŚĆ STRAT MOCY I ENERGII

Na rysunku 3a przedstawiono układ napowietrznej sieci rozdzielczej nn o obciążeniu równomiernie rozłożonym wzdłuż toru zasilającego odbiory wiejskie lub podmiejskie. Badano wpływ budowy dodatkowej stacji transformatorowej SN/nn (rys. 3b) na poziom strat energii w transformatorach i w linii. Obliczenia wykonano korzystając z modelu liniowego [2]. Obliczono również prosty okres zwrotu nakładów na budowę stacji transformatorowej wynikający z zysku osiągniętego z tytułu ograniczenia strat.

Obliczenia prowadzono przy założeniach:

- każdy odbiór pobiera taką samą moc P_Z ,
- odbiory oddalone są o stałą średnią odległość l_{sr} ,
- dla wszystkich odbiorów przyjmujemy jednakowy cos φ,
- na całej długości l_c zakładamy jednakowy przekrój linii s,
- do obliczeń przyjmujemy liniowy równomierny rozkład obciążenia wzdłuż linii na długości l_c.

Obliczenia wykonano dla następujących danych: długość toru $l_c = 1500$ [m]; średnia odległość między odbiorami $l_{sr} \in \{15, 20, 30, 40, 50, 60\}$ [m]; liczba odbiorów $n \in (25 \div 75)$; współczynnik mocy cos $\varphi = 0.93$; jednostkowa moc odbioru $P_Z \in \{2 \div 12\}$ [kW/odbiór]; przekrój przewodu s = 50 [mm²] Al.; współczynnik jednoczesności szczytów obciążenia $k_j = 0.3$; współczynnik poprawkowy dla obliczeń strat mocy $\delta_p = 0.1$; współczynnik dla obliczeń skorygowanego przekroju $\delta_u = 0.33$; koszt inwestycyjny napowietrznej stacji transformatorowej K_I = 36 440 [zł] (przeciętne koszty inwestycyjne napowietrznej stacji transformatorowej i transformatora o mocy 100 kVA); jednostkowy koszt strat energii $k_{\Delta E}$ = 0,20 [zł/kWh]; jednostkowy koszt strat mocy $k_{\Delta p}$ = 80 [zł/(kW·a)]; czas trwania strat maksymalnych τ = 2 100 [h/a]; transformatory S_{tr} 1 i S_{tr} 2 o mocy S_n = 100 [kVA] [1].

Rys. 3. Schemat elektroenergetycznej sieci rozdzielczej zasilającej odbiory: a) stan istniejący; b) stan po dobudowaniu dodatkowej stacji SN/nn

Obliczenia wykonano dla stanu wyjściowego (stacja transformatorowa S_{tr} 1 zasilająca odbiory) oraz po podziale głównego toru na dwa odcinki i dodaniu stacji transformatorowej S_{tr} 2. W obliczeniach wykorzystano zależności: na straty mocy w układzie (2), minimalny przekrój przewodu (3), obciążenie obwodów (4), straty energii (5).

W obliczeniach nie uwzględniono kosztów ewentualnej dobudowy linii SN lub nn. Do oceny ekonomicznej budowy drugiego transformatora zastosowano uproszczony wskaźnik opłacalności inwestycji (prosty okres zwrotu nakładów SPP):

$$SPP = \frac{K_{itr}}{Z} \tag{8}$$

gdzie: *K*_{*iir*} – koszt inwestycyjny transformatora [zł], *Z* – zysk z tytułu zmniejszenia strat energii po zainstalowaniu drugiego transformatora [zł/rok].

Na rysunku 4 przedstawiono wyniki obliczeń zmian strat energii po wybudowaniu dodatkowej stacji. Z rysunku 4 wynika, że przy niewielkiej gęstości obciążenia liniowego $p_n = P_z l_{sr}$ (dla analizowanego przykładu $p_n < 0.08$ kW/m) straty w układzie zasilania z jednym transformatorem są mniejsze niż w układzie z dwoma transformatorami (bilans strat jest ujemny). W takim przypadku nie istnieją warunki zwrotu kosztów budowy dodatkowego transformatora z tytułu zmniejszenia strat energii.

Rys. 4. Ilość oszczędzonej energii ΔE po wybudowaniu dodatkowej stacji transformatorowej SN/nn w funkcji obciążenia jednostkowego odbioru P_z , dla różnych średnich odległości między odbiorami, czas trwania strat maksymalnych $\tau =$ 2100 h/a, całkowita długości linii nn, $l_c = 1500$ m

Na rysunku 5 przedstawiono zależność prostego okresu zwrotu nakładów na budowę stacji transformatorowej w funkcji obciążenia jednostkowego P_z dla różnych średnich odległości l_{sr} pomiędzy odbiorami.

Z rysunku 5 wynika, że dla przyjętego czasu trwania strat maksymalnych $\tau = 2100$ [h/a] prosty okres zwrotu nakładów inwestycyjnych (*SPP*) jest mniejszy od 5 lat dla gęstości obciążenia liniowego $p_n > 0.30$ kW/m (np. $P_z =$ 6 kW, $l_{sr} = 20$ m; $P_z = 7,5$ kW, $l_{sr} = 25$ m).

Rys. 5. Zależność prostego okresu zwrotu kosztów budowy stacji transformatorowej SN/nn SPP od jednostkowego obciążenia odbiorów P_z dla różnych średnich odległości l_{sr} (długość całkowita obwodu nn $l_c = 1500$ [m]; czas trwania strat maksymalnych $\tau = 2\ 100$ [h/a]

Wykonano również obliczenia prostego okresu zwrotu kosztów budowy stacji transformatorowej SN/nn SPP, dla różnych wartości jednostkowego kosztu strat energii k_{AE} i jednostkowego kosztu strat mocy k_{Ap} . Badania wykonano dla następujących wartości kosztów jednostkowych strat mocy i energii:

cena_1 – $k_{\Delta E} = 0,20$ [zł/kWh]; $k_{\Delta p} = 80$ [zł/(kW·a)], cena_2 – $k_{\Delta E} = 0,40$ [zł/kWh]; $k_{\Delta p} = 160$ [zł/(kW·a)], cena_3 – $k_{\Delta E} = 0,60$ [zł/kWh]; $k_{\Delta p} = 240$ [zł/(kW·a)] oraz średniej odległości między odbiorami 1_{sr} = 25 [m] (60 odbiorów). Pozostałe parametry obwodu nie uległy zmianie. Wyniki przedstawiano na rysunku 6.

Rys. 6. Zależność prostego okresu zwrotu kosztów budowy stacji transformatorowej SN/nn SPP od jednostkowego obciażenia odbiorów P_{z} , dla następujących wartości kosztów jednostkowych strat mocy energii: i cena_1 - $k_{\Delta E} = 0,20 \ [z / kWh]; k_{\Delta p} = 80 \ [z / (kW · a)],$ cena_2 - $k_{\Delta E} = 0,40 \ [zl/kWh]; k_{\Delta p} = 160 \ [zl/(kW \cdot a)],$ cena_3 - $k_{\Delta E} = 0,60 \text{ [zl/kWh]}; k_{\Delta p} = 240 \text{ [zl/(kW·a)]} i$ średniej odległości $l_{sr} = 25 \text{ [m]}$, całkowitej długości obwodu nn l_c=1500 [m]; czasu trwania strat maksymalnych τ =2 100 [h/a]

Przeprowadzone badania pozwalają stwierdzić, że w warunkach rzeczywistych może wystąpić takie obciążenia jednostkowe P_z odbioru i średnia odległości l_{sr} między odbiorami, dla których prosty okres zwrotu kosztów *SPP* budowy stacji transformatorowej SN/nn jest mniejszy od 5 lat (rys. 5). Należy również zauważyć że spodziewana podwyżka cen energii w najbliższych latach spowoduje, że wzrośnie opłacalność budowy dodatkowych stacji SN/nn wynikających z potrzeby ograniczenia strat mocy i energii (rys. 6).

4. WNIOSKI KOŃCOWE

Obliczenia wykazały, że budowa dodatkowego punktu zasilania SN/nn zazwyczaj prowadzi do zmniejszenia strat mocy i energii.

Decyzję o nowych inwestycjach podejmuje się, zwykle z powodów innych niż ograniczenie strat mocy. Towarzyszące tym inwestycjom zmniejszenie strat mocy jest argumentem dodatkowym za podjęciem takiej decyzji. Dla ograniczenia jednostkowych strat energii (na jednego odbiorcę) w sieci o obciążeniu równomiernym (rys. 3) należy unikać zasilania zbyt małej liczby odbiorów z jednej stacji transformatorowej SN/nn. W analizowanych przykładach liczba przyłączonych odbiorów powinna być większa od 18 ÷ 22.

Z przeprowadzonych obliczań (rys. 5, 6) wynika, że czasy zwrotu nakładów na budowę stacji transformatorowej krótszy niż 5 lat jest możliwy dla gęstości obciążenia liniowego p_n o wartości większej niż 0.30 kW/m (rys. 5).

Przeprowadzone badania (rys. 4, 5, 6) wskazują na pilną potrzebę badań w celu aktualizacji stanu obciążenia obwodów nn w rejonach podmiejskich i wiejskich w celu określeniu aktualnej wartości współczynnika jednoczesności obciążenia k_i .

Zastosowana metoda obliczeniowa bazuje na uproszczonym modelu sieci elektroenergetycznej. W najbliższej przyszłości upowszechnienie technologii *smart metering* umożliwi bieżący pomiar obciążenia sieci i zastosowanie do obliczeń strat mocy i energii dedykowanego programu.

5. **BIBLIOGRAFIA**

- 1. Praca zbiorowa pod red. Jerzego Kulczyckiego: Straty energii elektrycznej w sieciach dystrybucyjnych, Poznań PTPiRE 2009, ISBN 978-83-925667-1-7.
- Kahl T. Sieci elektroenergetyczne, Warszawa WNT 1984, ISBN 83-204-0261-1.
- Zbiór przepisów technicznych dotyczących projektowania i wykonania robót elektryfikacji rolnictwa. Zjednoczenie, Elektryfikacji i Zaopatrzenia Rolnictwa i Wsi w Wodę, Wyd. IV, Warszawa 1994.
- Zoworka G.: Wyznaczanie i przewidywanie zapotrzebowania mocy szczytowej przez wiejskich odbiorców energii elektrycznej. Wydawnictwo Wyższej Szkoły Pedagogicznej w Opolu, seria Studia i Monografie, Opole 1992, ISSN 0239-6718.
- Gładykowski F.: Nowe zasady przyjmowania obciążeń w zagrodach oraz obliczania sieci nn i stacji transformatorowej, Biuletyn informacyjny, z. 77, Krajowe Zrzeszenie Elektryfikacji Rolnictwa, Warszawa, 1984.

SELECTED PROBLEMS OF MINIMIZING POWER AND ENERGY LOSS IN DISTRIBUTION NETWORKS

Key-words: electric power distribution network, power and energy loss.

In the paper there are presented selected methods of minimizing power and energy loss in low-voltage networks feeding rural and suburban areas. The analysis is carried out with the use of a linear model of the network with a uniform power load along the network tracks. In order to decrease the energy loss (per one recipient) in a network with linear load (Fig. 2) one should avoid the feeding of too small a number of loads from one MV/LV transformer station (the number of connected loads should exceed 18-22). The calculations have shown that the construction of an additional feeding point usually leads to the decrease of the power and energy loss.