PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on Fungicidal Properties of 1,3,4-Thiadiazole Derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania właściwości grzybobójczych pochodnych 1,3,4-tiadiazoli
Języki publikacji
EN
Abstrakty
EN
The results of the research concerning the effect of 1,3,4-thiadiazole derivatives on fungicidal Candida albicans are discussed. In all the conducted tests the reference strain of Candida albicans ATCC 10231 was used. To obtain the desired results, the following standard and synthesized thiadiazole derivatives were tested: 2-acetylamino-1,3,4-thiadiazolo-5-sulfonamide; 2-acetylamino-5-chloro-1,3,4-thiadiazole; 2-amino--1,3,4-thiadiazole; 2-acetylamino-1,3,4-thiadiazole; 2-acetylamino-1,3,4-thiadiazolo-5-sulfonic acid and bis(2--acetylamino-1,3,4-thiadiazolo)-5,5’-disulfonamide. In all the examined compounds the increase in the Candida albicans inhibition zone proportional to the increase of the compound concentration was observed. The only exception is 2-acetylamino-1,3,4-thiadiazole demonstrating the opposite tendency. While carrying out the research, it was found that 2-amino-1,3,4-thiadiazole proved to be the most effective of all the compounds within the tested group. It was also found that the higher the concentration of the compound, the higher the growth control zone (y) of Candida albicans. This phenomenon can be described by means of the equation: y = 0.9167x3 – 7.4286x2 + 10.655x + 23.1 (where: x – concentration of 2-amino-1,3,4-thiadiazole).
PL
W prezentowanej pracy okreoelano działanie grzybobójcze pochodnych 1,3,4-tiadiazoli. We wszystkich testach używano referencyjnego szczepu Candida albicans ATCC 10231. W tym celu przetestowano następujące syntetyzowane i wzorcowe związki heterocykliczne: 2-acetyloamino-1,3,4-tiadiazolo-5-sulfonamid; 2-acetyloamino-5-chloro-1,3,4-tiadiazol; 2-amino-1,3,4-tiadiazol; 2-acetyloamino-1,3,4-tiadiazol; kwas 2-acetyloamino-1,3,4-tiadiazolo-5-sulfonowy oraz bis(2-acetyloamino-1,3,4-tiadiazolo)-5,5’-disulfonamid. Badane związki proporcjonalnie ze zwiększeniem stężenia zwiększają strefę zahamowania wzrostu grzyba Candida albicans. Wyjątkiem jest 2-acetyloamino-1,3,4-tiadiazol, który wykazuje odwrotną tendencję. Najskuteczniejszym z badanej grupy związków okazał się 2-amino-1,3,4-tiadiazol. Wykazano, że ze zwiększeniem stężenia tego związku rośnie rozmiar strefy zahamowania wzrostu (y) Candida albicans zgodnie z równaniem y = 0,9167x3 – 7,4286x2 + 10,655x + 23,1 (gdzie: x – stężenie 2-amino- -1,3,4-tiadiazolu).
Rocznik
Strony
1339--1348
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
autor
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz, ul. Seminaryjna 3, 85–326 Bydgoszcz, terra@utp.edu.pl
Bibliografia
  • [1] Zan X.I., Lai L.H., Jin G.Y. and Zhong Z.X.: Synthesis, fungicide activity and 3D-QSAR of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J. Agric. Food Chem. 2002, 50, 3757–3760.
  • [2] Chem H., Li Z. and Han J.: Synthesis and fungicidal activity against Rhizoctonia solani of 2-alkyl(alkylthio)-5-pyrazolyl-1,3,4-oxadiazoles (thiadiazoles). J. Agric. Food Chem. 2000, 48, 5312–5315.
  • [3] Barboiu M., Cimpśsu M., Guran C. and Supura C.T.: 1,3,4-thiadiazole derivatives. Part 9. Synthesis and biological activity of metal complexes of 5-(2-aminśthyl)-2-amino-1,3,4-thiadiazole. Metal Based Drugs 1996, 3(5), 227–232.
  • [4] Mittendorf J., Kunisch F., Matzke M., Militzer H.C., Schmidt A. and Schönfeld W.: Novel antifungal â-amino acids: synthesis and activity against Candida albicans. Bioorg. Med. Chem. Lett. 2003, 13(3), 433–436.
  • [5] Wróblewska M.M., Swoboda-Kopec E., Rokosz A., Krawczyk E., Marchel H. and Luczak M.: Epidemiology of clinical isolates of Candida albicans and their susceptibility to triazoles. Int. J. Antimicrob. Agent. 2002, 20(6), 472–475.
  • [6] Ernst E.J., Klepser M.E. and Pfaller M.A.: In vitro interaction of fluconazole and amphotericin B administered sequentially against Candida albicans: effect of concentration and exposure time. Diagn. Microbiol. Infect. Dis. 1998, 32(3), 205–210.
  • [7] Morschhäuser J.: The genetic basis of fluconazole resistance development in Candida albicans. Biochim. Biophys. Acta 2002, 1587(2–3), 240–248.
  • [8] Cowen L.E., Sanglard D., Calabrese D., Sirjusingh C., Anderson J.B. and Kohn L.M.: Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 2000, 182(6), 1515–1522.
  • [9] Browder I.W., Williams D.L., Kitahama A. and DiLuzio N.R.: Modification of post-operative C. albicans sepsis by glucan immunostimulation. Int. J. Immunopharmac. 1984, 6(1), 19–26.
  • [10] Janusz M.J., Austen K.F. and Czop J.K.: Phagocytosis of heat-killed blastospores of Candida albicans by human monocyte fi-glucan receptors. Immunology 1988, 65, 181–185.
  • [11] DiLuzio N.R., Williams D.L., Cook J.L. and Hoffman E.O.: Protective effect of glucan in experimentally induced candidiasis. J. Reticulśndothel. Soc. 1978, 53, 479–490.
  • [12] Outline of Medical Mycology, ed. by Baran E., VOLUMED, Wrocław 1998, 262–263 (in Polish).
  • [13] Kluczek J.P.: Selected Problems of Environmental Protection, Academic Publishing of Technical and Agriculture University, Bydgoszcz 1999, 40 (in Polish).
  • [14] Hinzelin F. and Block J.C.: Yeasts and filamentous fungi in drinking water. Environ. Technol. Lett. 1985, 6(3), 101–106.
  • [15] Nagy L.A. and Olson B.H.: Occurrence and significance of bacteria, fungi, and yeasts associated with distribution pipe surfaces, [in:] Proceedings of the American Water Works Association, Water Quality Technical Conference 1985, p. 213. American Water Works Association, Denver, Colorado.
  • [16] Arvanitidou M., Kanellou K., Constantinides T.C. and Katsouyannapoulos V.: The occurrence of fungi in hospital and community potable waters. Lett. Appl. Microbiol. 1999, 29(2), 81–84.
  • [17] Loghmani-Khouzani H., Rauckyte T., Ośmiałowski B., Gawinecki R. and Kolehmainen E.: GIAO/DFT 13C NMR Chemical Shifts of 1,3,4-thiadiazoles. Phosp. Sulf. Silic. Relat. Elem. 2007, 182(9), 2217–2225.
  • [18] Kanaoka M.: Synthesis and related compounds of thiosemicarbazide. I. 2-hydrazino-1,3,4-thiadiazole derivatives. Chem. Abstr. 1956, 50, 5647.
  • [19] Kruckenberg W. and Eue L.: Dimercaptothiadiazoles as herbicides. Chem. Abstr. 1960, 54, 3840 b–d.
  • [20] Jensen K.A. and Pedersen C.: Studies of thioacids and their derivatives. VI. Formation of thiadiazoles and tetrazines in the preparation of thiohydrazides. Acta Chem. Scand. 1961, 15(5), 1124–1129.
  • [21] Werber G., Buccheri F. and Gentile M.: Reactivity of 2-amino-1,3,4-thiadiazoles. Nucleophilic behaviour of some 2-amino-1,3,4-thiadiazoles: Model compounds. J. Heterocycl. Chem. 1977, 14, 1263–1265.
  • [22] Petrow V., Stephenson O., Thomas A.J. and Wild A.M.: Preparation and hydrolysis of some derivatives of 1:3:4-thiadiazole. J. Chem. Soc. 1958, 1508.
  • [23] Ionita A., Moscovici M., Popa C., Vamanu A., Popa O. and Dinu L.: Screening of yeast and fungal strains for lypolytic potential and determination of some biochemical properties of microbial lipases. J. Molec. Catal. B: Enzimatic 1997, 3, 147–151.
  • [24] Kędzia W.: Microbiological Diagnostics in Medicine, PZWL, Warszawa 1990, pp. 105–112 (in Polish).
  • [25] Hill D.L.: Aminothiadiazoles. Cancer Chemother. Pharmacol. 1980, 4(4), 215–220.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0061-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.